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1.0 Introduction

Stochastic Resonance (SR) is a nonlinear phenomenon first reported and analyzed in [Benzi
1981] in terms of a nonlinear dynamic effect. Since then, it was proposed [Benzi 1982] [Nicolis]
to explain the observed periodic occurrences of the earth's ice ages using a two state system
denoting the earth's climate at present and during the ice age. Variations in the absorption and
reflectance of incident solar energy due to changing weather conditions constituted the system
'noise'. The weak periodic 'signal' consisted of variations of incident solar energy due to
periodic eccentricity in the earth's orbit. Since then, considerable research efforts have assessed
the effect in a wide range of applications including audio systems [Lipshitz], neural networks
[Lindner], hyperspectral imaging [Chiang], neuroscience [Kosko], medical imaging [Muller],
visual perception [Simonotto], more recently in tactical surveillance [Repperger], as well as
applications cited in the reference section.

The classic SR signature is the signal-to-noise ratio (SNR) gain of certain nonlinear
systems; i.e., the output SNR is significantly higher than the input SNR when an appropriate
amount of noise is added. This ratio reflects the gain achieved by the processing procedure.
These considerations are treated in references [3] - [17] of [Chen, et. al., 2006b]. Some
approaches have been proposed to tune the SR system by maximizing SNR. It has been shown
that the SNR of a summing network of excitable units is optimum at a certain level of noise
[Collins]. Later, for some SR systems, robustness enhancement using non-Gaussian noise was
reported in [Castro, et. al.]. For a fixed type of noise, Mitaim and Kosko [Mitaim, 1998]
proposed an adaptive stochastic learning scheme performing a stochastic gradient ascent on the
SNR to determine the optimal noise level based on the samples from the process. Rather than
adjusting the input noise level, [Xu, et. al.] proposed a numerical method for realizing SR by
tuning system parameters to maximize SNR gain. Although SNR is a very important measure of
system performance, SR approaches based on SNR gain have several limitations. Specifically,
SNR characterizes only the second order terms of the processes; i.e., the signal and noise
variance. First, the definition of SNR is not uniform and, in fact, varies from one application to
another. Second, to optimize the performance, the complete a priori knowledge of the signal is
required. Finally, for detection problems where the noise is non-Gaussian, higher order terms
may play a role and optimizing output SNR does not guarantee optimizing probability of
detection.

SR was also found to enhance the mutual information (MI) between input and output
signals [Godivier], [Goychuk], [Stocks], [Kosko 2003, 2004], [Mitaim 2004]. Similar to the
SNR scenario, for a specified type of SR noise, [Mitaim 2004] showed that almost all noise
probability density functions produce some SR effect in threshold neurons and a new statistically
robust learning law was proposed to find the optimal noise level. [McDonnell] pointed out that
the capacity of a SR channel cannot exceed the actual capacity at the input. Compared to SNR,
MI is more directly correlated with the transferred input signal information.

In signal detection theory, SR also plays a very important role in improving the signal
detectability. In [Asdi] and [Zozor 2002], improvement of detection performance of a weak
sinusoid signal is reported. To detect a DC signal in a Gaussian mixture noise background, [Kay
2000] showed that under certain conditions, performance of the sign detector can be enhanced by
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adding some white Gaussian noise. For another suboptimal detector, the locally optimum
detector (LOD), [Zozor 2003] pointed out that detection performance is optimum when the noise
parameters and detection parameters are matched. A study of the stochastic resonance
phenomenon in quantizers conducted in [Saha] showed that improved detection performance can
be achieved by a proper choice of the quantizer thresholds. Recently, [Rousseau] pointed out
that the detection performance can be further improved by using an optimal detector on the
output signal. Despite the progress achieved by the above approaches, the study of the SR effect
in signal detection systems is rather limited and does not fully consider the underlying theory. In
[Chen 2006b], the underlying mechanism of the stochastic resonance phenomenon was explored
for a more general two hypotheses detection problem.

The type of detector that lends itself to improved detection via stochastic resonance is one
that nonlinearly processes the data. The eye itself is a nonlinear device and so it is conceivable
and has been demonstrated empirically that improved visual detection is possible through this
mechanism. The important question of what type of noise to be added has until recently evaded
a solution. In Phase I, this issue was addressed directly and a fundamental theoretical concept
was developed leading to a determination of the optimal additive SR noise to achieve maximum
probability of detection PD subject to the constraint that the probability of false alarm PFA is not
increased.

Clearly, improving visual imagery for human visual perception will depend on the type of
nonlinearity that the eye employs. Ultimately, we know that it is the brain that responds to a
visual stimulus causing neurons to fire. Conceivably if we understood the effect of the noise
PDF on detectability for the "eye detector", then we could add noise such that the total noise
PDF is the most desirable one. This requires a study of a.) the types of noise PDFs that can be
obtained via convolution since adding noise random variables causes a convolution of their
PDFs, b.) the most desirable noise PDF from the standpoint of detectability, and c.) how standard
detection theory relates to human visual perception.

We previously pointed out that there are limitations of the signal-to-noise ratio as the most
important measure of human detectability. In fact, the SNR measure only characterizes detection
in the Gaussian noise case. For non-Gaussian noise, SNR is only part of the story with, for
example, the intrinsic accuracy providing the remainder in the independent, identically
distributed (1ID) non-Gaussian detection problem. The intrinsic accuracy is the single sample
Fisher information for a DC level in non-Gaussian IID noise [Kay 1998]. Clearly, these two
important aspects of design are related and so an overall strategy of noise PDF design is
required. It was also noted in the Phase I proposal that there are also questions of whether the
additive enhancement noise should be IID from pixel to pixel. It is possible that correlated noise
might be more fruitful. This is an avenue of research that has not been addressed. Furthermore,
multivariate PDF design is a difficult problem, but there has been recent progress in this area
[Kay 2001], [Tanner 1993], [Ruanaidh 1996], [Gilks 1996]. The above considerations were
noted, but not fully considered in the Phase I effort. In Phase II, we shall return to give more
thorough consideration to these issues among others.

The establishment of an analytic framework for algorithmic development utilizing stochastic
resonance was a prime objective of the Phase I effort. In order to achieve this goal, it was
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imperative to assess the relationship of the non-Gaussian nature of the noise processes, the non-
linear aspects of the signal processing or suboptimal detection device, as well as the
characteristics of the sub-threshold signals.

An important consideration here is that the non-Gaussian noise PDF may actually provide a
potential for improved detection performance provided that an appropriate detection strategy is
employed. Evidence for this consideration has been noted by [Kay], [Michels] in several
publications, although not related to stochastic resonance. Several of these analyses involved
partially correlated non-Gaussian noise processes in addition to additive white Gaussian noise.
As noted previously, it is possible that the use of correlated noise may be beneficial in the
enhancement of the stochastic resonance effect. Both the application of correlated noise as well
as the assessment of processes already containing such noise is an open area of research which
has received little attention. It remains as an important research topic for the Phase II effort.

In Chapter 2, a novel fundamental theory addressing the optimization of stochastic
resonance in detection theory is outlined. The development of this theory was the prime
contribution of Phase I. Specifically, this effort achieved the goal of establishing a fundamental
analytical framework for the application of stochastic resonance to detection from which an
optimization solution could be obtained. Chapter 3 provides an alternative presentation
introducing the analytical framework. In Chapter 4, a novel consideration is given to the
potential use of an alternative decision statistic transformation methodology to recover optimal
performance for a suboptimal detector. Subsequent subsections address the application of the
analytical detection theory framework to suboptimal detectors such as nonparametric detectors
(Chapter 5), image enhancement (Chapter 6), distributed fusion applications (Chapter 7), and
probability of error reduction (Chapter 8) with implications for communications theory. Finally,
recommendations and future considerations are presented in Chapter 9.
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2.0 A Fundamental Detection Framework using Stochastic Resonance

2.1 Introduction to the Fundamental Detection Framework using SR

This chapter summarizes the mathematical framework developed during Phase I to analyze
the stochastic resonance (SR) effect in binary hypothesis testing problems [Chen, et. al., 2006a,
b]. Specifically, given an N dimensional data vector x E RN, we decide between two hypotheses
H1 and H0,

H0: px(x;Ho) = po(x)
HI: p.(x;H) = p1(x) (2.1)

where po(x) and pl(x) are the PDFs of x under H0 and H 1, respectively. The test above can be
completely characterized by a critical function (decision function) 4i where 0 < 4i(x) < 1for all x.
For any observation x, this test chooses the hypothesis H1 with probability ý(x). In many cases,
4(x) can be implicitly expressed by a test statistic T(x) which is a function of x and a threshold ri
such that

H,
T(x) >(2.2)

HO

where its corresponding critical function is

I T(x) > q

OT(x) = T(x) = 77 (2.3)
0 T(x) < 77

and 0 <a < 1 is a suitable number. The probability of detection PD is now given by

S= f• O(x)Pl(x)dx (2.4)

and the probability of false alarm PFA is given by

= J f,, )O() (2.5)

where the superscripts on PD and PFA in (2.4) and (2.5) indicate that the test in (2.2) is
employed for the data vector x. Although the critical function 4(x) and test statistic T(x) can take
any form, the optimum Neyman-Pearson test involves the likelihood ratio test (LRT) where
TLRT(X) = p1(x)/po(x). Although this test provides optimal PD subject to the constraint that PFA =

cc is fixed, the associated LRT requires complete knowledge of the PDFs p0(x) and pl(x). In
most practical applications, this knowledge is unavailable and may have to be estimated from the
data. Also, the input data statistics may very with time or may change from one application to
the other. Further, for many detection problems the exact form of the LRT may be too
complicated to implement. Therefore, suboptimal detectors featuring simplicity and robustness
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are often preferred [Thomas 1970]. To improve a suboptimal detector detection performance,
two approaches are widely used. In the first approach, the detector parameters are varied [Zozor
1999, 2002, 2003], [Saha], Galdi]. Alternatively, when the detector itself cannot be altered or
the optimum parameters are difficult to obtain, adjusting the observed data becomes a viable
approach. Thus, in the work reported here, prime consideration was given to applications in
which such detector parameters could not be changed; i.e., the detector parameters were
considered to be fixed in terms of both the test statistic and the threshold. This is often the case
for applications where the signal processing methodology is not under the user's control. In such
cases, we consider the alternative approach of utilizing stochastic resonance.

It is well known that the detection performance can be improved by adding additional noise
that is statistically dependent on the existing noise and/or with PDF that depends in which
hypothesis is true [Kay 2000]. However, adding a dependent noise is not always possible
because pertinent prior information is usually not available. Therefore, we constrain the additive
noise to be independent noise. For some suboptimal detectors, as noted in [Kay 2000], detection
performance can be improved by adding such noise to the data under certain conditions. For a
given type of SR noise, the optimal amount of noise can be determined that maximizes the
detection performance for a given suboptimal detector [Inchiosa]. In an effort to explain this
noise enhanced phenomenon for some integrate-and-fire neuron models, [Tougaard]
demonstrated that the detection performance gain is caused by the nonlinear properties of the
spike-generation process itself. However, despite the progress made in the literature, the
underlying mechanism of this Stochastic Resonance phenomenon in detection problems has not
been fully explored. For example, an interesting problem is the determination of the best 'noise'
to be added in order to achieve the best achievable detection performance for the suboptimal
detector. In this case, the detection problem can be stated as: Given that the test is fixed, i.e., the
critical function 4(.), as for example T and q, is fixed, can we improve the detection performance
by adding SR noise? And if so, what is its PDF to maximize PD without increasing PFA?

Here, a theoretical analysis is presented to gain further insight into the SR phenomenon and
the detection performance of the noise modified observations is obtained. Further, the optimum
noise PDF, i.e., not only the noise level but also the noise type is determined. As an illustrative
example, the optimum noise PDF as well as several suboptimum noise PDFs are derived for the
sign detector. We emphasize that compared to some prior work where one or several nonlinear
systems are inserted between the final detector and the original input signal, here, by considering
the decision function 4 in general and the fact that we may consider the entire system between
the input signal and output detection resul as a 'super' detector, the results obtained in this paper
can be applied for any detection system with any type of fixed SR preprocessing system. Also,
compared to the earlier definitions of SR [Benzi 1981], [Gammaitoni], we further extend the
concept of 'SR' to a pure noise enhanced phenomenon, ie., a phenomenon of some nonlinear
systems in which the system performance is enhanced due to the addition of independent noise at
the input. In the work reported here, the terminologies 'SR' and 'noise enhanced' are used
interchangeably. However, we point out that the later is actually a generalization of the former.
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2.2 Problem Formulation

In order to achieve a possible enhancement of detection performance, we add noise to the
original data process x and obtain a new data process y given by

y = x + n, (2.6)

where n is either an independent random process with PDF pn(n) or a nonrandom signal. Note
that here we do not have any constraint on n. For example, n can be white noise, colored noise,
or even a deterministic signal A, corresponding to pn(n) = 6(n - A). As will be shown later,
depending upon the detection problem, an improvement of detection performance may not
always be possible. In that case, the optimal noise is equal to zero. The PDF of y is expressed by
the convolution of the PDFs such that

py (y) = p" Wx * p. Wx = f'p. (x)pn (Y- x)dx. (2.7)

The binary hypothesis testing problem for this new observed data y can be expressed as

fH 0 : py(y;Ho) = JR Po(X)p.(Y- x)dx (2.8)

H1 :py(y;H1)= J, pPl(x)P. (y -x)dx

Since the detector is fixed, i.e., the critical function 4 of y is the same as that for x, the
probability of detection based on the data y is given by,

P1Y = f,, R(y)pY (y;lH)dy

= JRN O(Y) IRN' (x)pn (y - x)dxdy

= R,, p1(x) ( J ,O(y)pn (y - x)dy) dx

= J'R p. (x)C.,1 (x)dx = E1 [Cn,,,(x)] (2.9)

where

CnO (x) J- fRN z(y)pn (y - x)dy (2.10)

Aternatively,

P R= JR Np(x)(JR•I(y)plP(y-x)dy)dx

= JF1,> (x)pn (x)dx = En (F1, (x)) (2.11)

Similarly, we have
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PYA = R po (x)C.,o (x)dx = Eo [C.,0 (x)] (2.12)

= {Fo, (x)p. (x)dx = E, (F, (x)) (2.13)

where
j (x)j =N,0(y)p,(y-x)dy i= 0, 1, (2.14)

and Fi,ý(x) corresponds to hypothesis Hi, and Ei(.), E,(-) are the expected values based on the
distributions pi(') and pn(.), respectively. Note that Fi(x) has the property that PA = F0, (0) and

P• = Fl,0(0). To simplify notation, we omit the subscript 4 ofF and C and denote them as F1, F0

and Cn, respectively. Further, from (2.14), FI(xo) and Fo(xo) are actually the probability of
detection and probability of false alarm, respectively, for this detection scheme with input y = x
+ x0. For example, Fl(-2) is the PD of this detection scheme with input x - 2. Therefore, it is
very convenient for us to obtain the F, and Fo values by analytic computation of values by
analytic computation if p0, pi and 4 are known. When they are not available, F1 and F0 can be
obtained from the data itself by processing it through the detector and recording the detection
performance. Thus, it is not necessary to have complete knowledge regarding 4(.) and pi(.).
From (2.11) and (2.13), we may formalize the optimal SR noise definition as follows.

Consider the two hypothesis detection problem as in (2.1). The PDF of the optimum SR
noise is given by

p, arg max fn ,F1 (x)p. (x)dx (2.15)

where

1) pn(x)_ Ž0,xe RN

2) J1 pn (x)dx = 1

3) J•R F0(x)pn(x)dx < F0(0).

Conditions 1) and 2) are fundamental properties of a PDF function. Condition 3) ensures that
PFY- PxA, i.e., the PFA constraint under the Neyman-Pearson criterion is satisfied. Further, if the

inequality condition in 3) becomes equality, the constant false alarm rate (CFAR) property of the
original detector is maintained.

2.3 Optimum SR Noise for Neyman-Pearson Detection

In general, it is difficult to find an exact form of pn(') directly because of condition 3).
However, an alternative approach considers the relationship between pn(x) and Fi(x). From
(2.14), for a given valuefo of F,, we have x =Fo7(fo), where Fo1 is the inverse ofF 0. When F0

is a one-to-one mapping function, x is a unique vector. Otherwise, Fo'(f 0 ) is a set of x for

which Fo(x) =fo. Therefore, we can express a value or a set of valuesf, ofF1 as
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fý = F, (x) = Fý (F0)-'(f0)) . (2.16)

Given the noise distribution of p,(.) in the original RN domain, p.,fo (.), the noise distributiom in

thefo domain can also be uniquely determined. Further. the conditions on the optimum noise can
be rewritten in terms offo equivalently as

4) p.,f 0 (fo) > 0

5) Jfp., o (f0 )dfo = 1

6) JfoP.,f(fo)dfo •-PA

and

P = fAnf(fo)dfo, (2.17)

where P,,,f (fo) is the SR noise PDF in thefo domain. Compared to the original conditions 1), 2)

and 3), this equivalent form has some advantages. First, theFroblem complexity is dramatically
reduced. Rather than searching for an optimal solution in R , an optimal solution is sought in a
single dimensional space. Second, by applying these new conditions, we avoid the direct use of
the underlying PDFs pj(.) and po(') and replace them withyfi and Jo, respectively. Note that in
some cases, it is not easy to find the exact form of fi and fo. However, recall that Fi(xo) and
Fo(xo) are the probability of detection and false alarm, respectively, of the original system x + x0.
In practical applications, we may learn the relationship by Monte Carlo simulation using
importance sampling. In general compared to p 1 and po, fi and fo are much easier to estimate and
once the optimum p.,o is found, the optimum p.(x) is determined as well by virtue of the

inverse of the function F0 and F1.

Let us now consider the function J(t) such that J(t) = sup(fi: fo = t) is the maximum value of
f, givenfo. Clearly, J(PA) Ž- Fl(O) = PA. From (2.17), it follows that for any noise p., we have

PNY(P.) = f J(f0)Pf (fo)df•. (2.18)

Therefore, the optimum PY is attained when fi(f) = J(fo) and PY, op, = En(J) .

A. Determination of SR Detection Improvement

A significant contribution of the theoretical framework provided here is the capability to
determine if SR will indeed provide performance improvement in a given problem. Detection
enhancement results using SR results if PD, op > PD. However, it requires complete knowledge of

Fo(-) and F1 (.) as well as significant computation. For a large class of detectors, however,
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depending on the specific properties of J, we may determine the sufficient conditions for
improvability and non-improvability more readily. These are given in the following theorems
the proofs of which are contained in [Chen 2006b].

Theorem 1 (Improvability of Detection via SR): If J(PFA) > PD or J"(PA) > 0 when J(t) is

second order continuously differentiable around PFA, then there exists at least one noise process

n with PDF pn(.) that can improve the detection performance.

Theorem 2 (Non-improvability of Detection via SR): If there exists a non-decreasing concave
function y(fo) where w(PFxA ) = J(PFA ) = F1 (0) and p(t?) _> J(f) for everyfo, then PD < P, for any
independent noise, i.e., the detection performance cannot be improved by adding noise.

B. Determination of the Optimum SR Noise PDF

Another very significant result of the theoretical framework is the determination of the exact
form of poP, subject to the constraint PFYA " PFA. This is contained in Theorem 3 [Chen 2006b].

Theorem 3 (Form of Optimum SR Noise): To maximize PDy under the constraint PYA < PxA, the

optimum noise can be expressed as'

pOp (n) = 25(n-nl)++(1-2)(n-n 2 ) (2.19)

where 0 < k < 1. Specifically, to obtain the maximum achievable performance given the false
alarm constraint, the optimum noise is a randomization of two discrete vectors added with
probability k and (1 - k), respectively. It can also be shown [Chen 2006b] that

pop,f = 25(f fo) + (1 - 4)6(f 0 - f 02) (2.20)

wherefol = Fo(ni) andf02 = Fo(n 2). Alternatively, the optimum SR noise can also be expressed

in terms of C., such that

C1p'"(x) = 2o(x + n,) + (1 - 2)(x + n 2). (2.21)

From (2.20), we have

Dopt = i )±+ 1 -Ak)J(f 0 2 ) (2.22)

and

PFA~opt = 0 l+ (1- )f 0 2 <FA" (2.23)

'This form of optimum noise PDF is not necessarily unique. There may exist other forms of noise PDF that achieve
the same detection performance.
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C. Determination of the PDF of Optimum SR Noise

Depending upon the location of the maxima of J(.), we have the following theorem.

Theorem 4 Let FlM = max(J(t)) = to and to = arg min(J(t) = FlM). It follows that

Case 1: If to PFA ,then P opY = to and PY ---- FmM, i.e., the maximum achievable performance

is obtained when the optimum noise is a DC signal with value no or

P.' (n) = S(n - no) (2.24)

where Fo(no) = to and FI(no) = FlM. Here, the maximum probability of detection is achieved

subject to the probability of false alarm constraint PFY ___ P<XA by adding a constant to the input

with a value that depends upon the decision regions and the probability density functions under
the two hypotheses. However, the threshold must be varied to maintain PFYA _ PxXA.

Case 2: If to>PFA, then PAopY =F0(0)_p, i.e., the inequality of (2.23) becomes equality.

Furthermore,

PA~opt A Mol+(1-)fo2=FA" (2.25)

In this case, the probability of false alarm is maintained without a threshold variation. Thus, the

CFAR property is achieved.

2.4 A Detection Problem Example

The above theoretical methodology was applied to the problem considered by [Kay 2000].
Given observation data x[n], n = 1, 2, ... , N, we consider the binary hypothesis testing problem
such that

H0 :x[n] = w[n] n = 1, 2, ..., N (2-26)

H1 :x[n]=A+w[n] n=1,2,...,N

involving detection of a known dc signal level A > 0 in i.i.d. symmetric Gaussian mixture noise
w[n] with PDF

pw(w) = 1y(w;_P, Uo02) + I y(w;, U2) (2.27)
2 20

where

2 (W___exr)2
Y(W; Pw U6 .)j (2.28)

w2) -22
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Here, ýI = 3, A = 1 and c0 = 1. The suboptimal sign detector is considered with test statistic
I N-1 I I . I N-1

T(x) = +~ ~-+sgn(x[i]) -= lxll (2.29)

1 1

where wuji] = -+ sgn(x[i]) From the second equality in (2.29), we consider this detector as
22

essentially the fusion of the decision results from N ii.d. sign detectors. For N = 1, the detection
problem reduces to a problem with test statistic Ti(x) = x, threshold 71 = 0 (sign detector), and

probability of false alarm pFxA = 0.5. The distribution of x under the H0 and H1 hypotheses can be

expressed as
1 1

Po(X) = -y(x;-P,o-2)+ y(x;;P,o-U) (2.30)
2 20

and
1 2 1

p.(xW =- y(x;-p,+ A, ao ) +-r I(x;,p + A, cU), (2.40)
2 20

respectively. The critical function is given by

OW = ýO (2.41)

The problem of determining the optimal SR noise is to find the optimal p,(n) where for the new

observation y = x + n, the probability of detection PY = p(y > 0;H 1) is maximum while for the

probability of false alarm, PY = p(y > 0;H 0) < PFA = -1 It follows [Chen 2006b] that the

resulting optimal SR noise PDF is

p7p,(n) = 28(n-nl) + (1-))8(n-n 2)= 0.30858(n + 3.5) + 0.69156(n - 2.5). (2.42)

It also follows that for the case of optimal SR noise, but now constrained to have a symmetric
PDF, p' (x), where p' (x) = pP (-x), we have for the example considered here

Ps"(x W 16(x - p) + I15(x + (2.43S(2.43)
2 2

Performance results are shown in Fig. 2.1. First, let us consider Fig. 2.1 a which plots the
curve U = (fi, fo) where fi = Fi(x) and fo = Fo(x). This curve is significant in that it reveals the
potential for detection performance improvement via SR. This is observed by again noting that

for the original data process x, P•xA = FO (0) and PD' = FJ (0). For the problem considered here,
PxA = F0(0) = fo = 0.5 and P- = Fý (0) = fi = 0.51 yielding detection probability barely above

PFA. However, as indicated by the curve that upper bounds the convex hull, V, which contains
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all possible PD and PFA values after SR is added, PY = 0.6915. Thus, the region for potential

performance improvement via SR is the region of the convex hull V that lies above the curve U =
(fi, fo). Further, this indicates that if the curve U is a convex function, there is no potential for
performance improvement via SR. Thus, the curve U = (fi,fo) provides an important diagnostic
tool for the determination of potential performance enhancement.

Fig. 2.1b plots PY versus the signal level A. The lowest curve plots PD with no SR noise.
As expected, it increases with increasing signal level. The next three curves, which lie just
above, utilized the optimum PDFs for three symmetric SR noise cases. Ranging from lowest to
highest, the SR noise consisted of white Gaussian, uniform, and the optimal symmetric SR noise
of (2.43), respectively. We observe that for the symmetric SR noise cases, the curves all
converge at A = gt to a common PDY value which lies on the PD curve. Thus, for values ofA > gX,
no performance improvement is obtained using symmetric SR noise. However, for small values
of A, say 0 < A < 0.6, the PY values of the symmetric optimal SR noise case achieves the same

level of performance as those obtained for the case of optimal SR noise with PDF given by
(2.42). For A > 0.6, however, the latter optimal noise case achieves superior performance levels
closer to the optimal likelihood ratio test (LRT).

Fig. 2.1c considers the detection performance dependence upon the background noise
standard deviation, o-0. The lowest curve plots P, versus u-.; i.e., the case for which no SR

noise is added. We observe that as a,, increases, PL increases until the noise standard deviation

reaches the level a-1 = 2.942. For low values of a. (high SNR), however, the optimum SR noise

enhanced detector reaches PY & 1, while for the symmetric SR noise enhanced detectors, the

performance is reduced. As a-0 increases, the performance of the SR enhanced detectors

converges to the PD value at cr0 = a"1. This results from the convergence of the bimodal

Gaussian background noise PDF p0(x) to a unimodal PDF as a-0 approaches a-1. At this point,

the decision function O(x) and the LRT test are equivalent for PFA = 0.5. Thus, adding SR noise

will not improve PD and all the detection results converge to PD.

Fig. 2.1d shows each detector's performance with respect to gt for A = l and o-0 = 1. All the

detectors show a decrease in performance as gt increases from zero. However, for t > g-o ; 1.5,
the optimum LRT begins to increase with increasing g. To explain this effect, we note that for gt
<< •t, the bimodal Gaussian noise is approximately unimodal. However, as these two Gaussian
mixture peaks separate, the detectability initially decreases until the peaks are sufficiently
separated. As gt --> o, the peak separation is sufficient such that the background noise PDF is
essentially unimodal for signal level A > 0.

Finally, Fig. 2.2 shows the ROC curve for this problem, but now with N = 30. Again, the
superior performance of the optimal SR noise enhanced detectors is observed compared with the
cases of uniform and Gaussian SR noise. Specifically, the detection performance is much closer
to the optimal LRT curve.
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3.0 An Alternative Derivation for the SR Detection Framework

The following derivation [Kay, 2005] addresses the problem of deciding between two
hypotheses based on a single sample. The sample may be a single data sample or a test statistic.
The scalar test statistic is x, which under H0 has PDF p0(x) and under H1, pl(x). It is assumed
that we decide H1 ifx > 0. Now consider the same detector but replace x by y = x + c, where c is
a random variable that is independent ofx. Then, we decide H1 if y = x + c > 0. The PDF of c is
pc(c) and it is this PDF that is of interest. We allow the use of impulses in the PDF so that c may
be either continuous, discrete or mixed variable. For this detector, the probability of false alarm
and probability of detection are

PFA fpr'(y)dy (3.1)
0

PD = fpr (y)dy (3.2)
0

where the PDFs of y are

po (y) = Po(Y-c)pc(c)dc

y= p, (y -c)p,(c)dc

which follows from the usual result for the sum of two independent random variables. Explicitly
then

PFA = f[op (y-c)pc(c)dcdy

= po (y - c)dyp (c)dc
-~0

= JPFA(C)PC(c)dc

where PFA(c) = Jpo (y - c)dy denotes the conditional probability of false alarm. It is the
0

probability of false alarm conditional on observing C = c. Note that the unconditional
probability of false alarm PFA is just Ec[PFA(C)], where Ec denotes expectation with respect to
the PDF pc(c). Similarly, we have

PD f PD (c)pc (c)dc = Ec[PD(C)]

14



where

PD(C) = fp. (y - c)dy.
0

It is interesting to note that PD(C) is just the probability of detection for the original detector
but with the threshold, originally given by zero, replaced by -c. This is because we decide H1 if
y = x + c > 0 or equivalently if x > -c. The threshold, however, is a random variable and hence
the overall detector performance is given by the expected value Of PD(C).

Our problem has now reduced to the following. Choose pc(c) so that Ec[PD(C)] is
maximized subject to the constraint that Ec[PFA(C)] = ½/. (We assume continuity of the original
ROC so that the false alarm constraint is an equality). To proceed further it is useful to simplify
PFA(c) and PD(C). Consider

PFA(c) = fpo (y - c)dy
0

=fpo(t)dt (lett=y-c).
-C

Now note that in this form it is clear that PFA(C) is just the complementary distribution
function or right-tail-probability. Also, as such, it is obvious that as c increases (-c decreases),
that PFA(c) also increases. Thus, PFA(C) is monotonically increasing with c. It is well known that
if a function is monotonically increasing, then the inverse function exists and it too is
monotonically increasing; for example, g(x) = exp(x). Thus, we will use a variable change by
letting u = PFA(C), where if -oc < c < oc, we must have 0 _< u < 1. Also the inverse function is

denoted as c = PFA (u). Hence, we now have the new random variable U = PFA(C) and therefore

PFA = Ec[PFA(C)] = Eu[U] = fup, (u)du
0

and similarly
(UM = EcPoC) M' (u"p "ud

PD = Ec[PD(C)= Eu[PD(PFA (U))] =PD (PA (u))Pu (u)du.
0

Recall that we desire PFA - 1/2. Thus, the equivalent optimization problem is to maximize

J(pu) = JPD (PFA (U))Pu (u)du (3.3)
0

subject to the constraint that
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I

fup, (u)du =A½.
0

However, it is more convenient to write the constraint as

k(u-l12)pu(u)du =O=Eu[U-Y2]
0

and to define a new random variable W = U - V2 so that the constraint becomes Ew[W] = 0.
Then, J(pu) becomes from (3.3)

J(pu) = Eu[PD( PF (U))] = Ew[PD(P' (W + 1 / 2))] = J(pw)

where explicitly

1/2
J(pw) J PD(P(W+I/2))p,(w)dw

-1/2

1/2

= Jg(w)pw(w)dw
-1/2

and
g(w) = P. A(w1/2)

Summarizing, we wish to maximize over pw(w) the functional

1/2

f g(w)pw (w)dw
-1/2

subject to the constraint that Ew[W] = 0. Note that the random variable W - PFA(C) V- 2 takes on
values in the interval [-1/2, 1/2]. We can further simplify the problem by maximizing the
functional

1/2
f (g(w) -(w+l1 /2))pw (w)dw

-1/2

since f/2 (w + I / 2))pw (w)dw = ½ due to the Ew[W] 0 constraint. Letting

h(w) = g(w) - (w + 1 2)

which is explicitly

h(w) = PD (PF (W2( ) (3.4)
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we finally seek to maximize

1/2

f h(w)pw(w)dw
-1/2

subject to the constraint that Ew[W] = 0. Note that the function h(w) takes on nonnegative
values if PD(c) > PFA(C) (the ROC for a variable threshold of the detector that decides H1 ifx > -c
is above the 450 line). This is because

h(w) = PD(PF,(w+1/2)) - (w + ½) = PD (PF(U)) - U = PD(C) - PFA(C) Ž0.

Also, at the end points of the [-1/2, ½/2] interval in w we have

h(-1/2) = PD(PFA(O)) = PD(+oo) = 0

h(1/2) = PD(PýA'(1)) - I = P,(--o) - 1 = 0.

A typical plot of h(w) is shown in Fig. 3.1. This example will be used later.

0.2 I I I

0.15 - - ', ,

0 .1 --F --

0.05- -- - -- --

0 -- -- - L.i

-0.05 F F F FI

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

w
Fig. 3.1 Plot of the h(w) function for the example problem.

In essence, we have modified the function F, versus F0 in Section 2.0 so that it is plotted as
the difference between the function and the 450 line. (See also Fig. 2.l1a for F, versus Fo). Also,
it has been shifted to be defined over the symmetric interval [-1/2, 1/2]. This has the advantage
of simplifying extensions of the results given here. In addition, the maxima, which will be
required later, are easily found numerically using efficient routines such as a golden search.

The problem now is to maximize the functional

17



1/2

J(pw) = f h(w)pw(w)dw (3.5)
-1/2

subject to the constraint that Ew[W] = 0. The function h(w) is nonnegative over the interval [-1/2,
1/2]. To simplify the discussion we will assume that h(w) has a unique maximum over the
interval (0,1/2), and a unique maximum over the interval [-1/2, 0]. The maximum is assumed not
to occur at w = 0. Also, it is assumed that the maximum values are equal. These assumptions
are satisfied for the example given in [Kay, 2000]. (More rigorous and general results can be
obtained using standard theorems in analysis such as 'continuous functions on compact sets',
etc.). Once the optimal Pw is found, the PDF for C or Pc can be found by transforming back to C
using the relationship W = PFA(C) - V2 and the standard results in transformation of random
variables. Note that if the maximum of h(w) over the interval [-1/2, 1/2] were to occur at w = 0,
then the constraint Ew[W] = 0 would be satisfied for pw(w) = 8(w) and J(pw) would also be
maximized. Thus, the solution would be to choose c = PA(w+1/2) = P•(1/2) = 0 and no
improvement in performance would be possible.

Continuing, we let w- be the value that maximizes h(w) for w < 0 and w+ be the value that
maximizes h(w) for w > 0 (w = 0 is excluded), and assume that h(w.) = h(w+). Let the set A
denote the remaining portion of the interval [-1/2, 1/2] so that { w-, w+} u A [-1/2, 1/2] and
{w., w+} r) A = 0. Next, represent pw(w) as

pw(w) =a( w.)8(w - w) + C( w+)6(w - w+) + pw(w)IA(w) (3.6)

where 8 denotes the Dirac delta function and IA(w) = 1 for w E A and is zero otherwise (the
indicator function). Actually, any PDF may be decomposed this way subject to the condition
that

a(w.) + ±a(w+) + JA P, (w)dw = 1.

Using this in (3.5) produces

J(pw) = h(w_)cL( w-) + h(w+)ot( w+) + f h(w)p,(w)dw. (3.7)

In order to satisfy the constraint, we must have that pw(w) has mass for w > 0 and w < 0 (or
the probability of W being negative is nonzero and the probability of W being positive is also
nonzero). Otherwise, we could not have Ew[W] = 0. The constraints on pw(w) form the two
linear equations

cL( w.) + a( w+) + JA pw (w)dw = 1

(w.) w_ + a(w+) w++ J wpw )dw 0.
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In matrix form the constraints are

Aa = b
or

['~ 1[a~?] [I- fl Pw(w~dw] (3.8)

where A, a and b are defined implicitly. With h = [h(w.) h(w+)]T, we have from (3.7)

J(pw) = hTa + fI h(w)p, (w)dw

= hTX-lb + fJh(w)pw(w)dw

[h(w-) h(w+)] f h(w)p+(w)dw

W+ w-ww, wd

- [w+h(Twý)-w(w+) h(w+) - h(w-) I[ -, I Pw(w)dw + fh(w)p,(w)dw.

Lw +-wUL IL- L wp,(w)dw A

We point out that the two terms in the first bracket can be expressed as

w+h(w_)-w h(w+) = h(w+)
w+-w_

W+ -

and

h(w+)- h(w) 0.

W+ --

Recalling that h(w.) = h(w+) and recognizing that h(w) < h(w+) for all w • A, we have that

J(pw) h(w+) + IA (h(w) - h(w+))pw (w)dw

<h(w+).

Clearly, the upper bound is attained when pw(w) = 0 for all w c A. This results in the solution
from (3.6) of

pw(w) - W+ 9(w - W)- + _ 15(w - w+) (3.9)
w+ -w_ w_ -w+

where we have solved for cc(w_) and a(w+) by using (3.8) with the right-hand-side vector being [1
0]. Since W can only take on values w- and w+, it follows that the only values C can take on are
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c- P-(w +1/2)

c+ PA(w+ +1/2). (3.10)

The optimal PDF for C is therefore

pc(c) w+ 5(c-c-)-+ - 5(c-c,) (3.11)w+-w_ w_-w
W+ - V - W+

where c- and c+ are given by (3.10) and w. and w+ are the values that maximize the
PD (PF' (w + 1/ 2)) - (w + 1/ 2) for -1/2:< w < 0 and 0 < w _ /2, respectively.

We again consider the example [Kay 2000] of Section 2.0 and assume only one sample as
described above. The PDFs are given by

PO x) exp )+ exp(2 1 --- 2 12-;-2

pI(X) = po(x- 1).

Since for a fixed c we decide H1 ifx > -c, we have

1 1
PFA(C)= -Q(-c-3)+- Q(-c + 3)

2 2

PD(c)= -Q(-c - 4) + -Q(-c + 2)
2 2

where Q(x) is the right-tail probability for a standard normal random variable. This is plotted in
Fig. 3.2. The function h(w) is given by (3.4) as

h(w) = PD (PFA- (w+1/2))-(w+1/2)

and can be evaluated over [-1/2, 1/2] as in Fig. 3.1. A numerical search finds the maxima of
h(w), which when converted to c yields c- = -3.507 and c+ = 2.493. The other values become

W+ 0.694 and w 0.306
w+ -w w -w+

so that the optimal PDF is

pc(c) = 0.3065(c + 3.507) + 0.694&(c - 2.493)

in agreement with the results obtained in Section 2.0.
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4.0 Reducing Probability of Decision Error using Stochastic Resonance

In this chapter, we address the problem of reducing the probability of decision error of an
existing binary receiver that is suboptimal using the ideas of stochastic resonance. The optimal
probability density function of the random variable that should be added to the input is found to
be a Dirac delta function, and hence the optimal random variable is a constant. The constant to
be added depends upon the decision regions and the probability density functions under the two
hypotheses, and is illustrated with an example. Also, an approximate procedure for the constant
determination is derived for the mean-shifted binary hypothesis testing problem.

Here, we consider the problem of deciding between two hypotheses Ho and H1 that can
occur with a priori probabilities P[Ho] = no and P[H1] = 7r1 = I = nto, respectively. Our criterion
for performance will be probability of error Pe, although the derivation is easily modified to
minimize the Bayes' risk by assigning costs associated with each decision [Kay 1998]. It is
assumed that the decision regions have already been specified, that they are not optimal in terms
of minimizing Pe, and that a single data sample x is used to make a decision. The already
specified decision regions may be arbitrary and hence our solution encompasses such regions as
if one would decide H1 if x > a or jxi < a as examples. The single sample is usually a test
statistic, i.e., a function of a set of observations, which is a common procedure in decision
making. To improve the performance, "noisy sample" c is added to form y = x + c prior to
decision making. We allow c to be a random variable and determine the PDF of c that will yield
the minimum Pe. It is proven next that the optimal PDF is a Dirac delta function, which leads to
the conclusion that the optimal random variable to be added is a degenerate one, i.e., a constant.

4.1 Optimal PDF of Additive Noise Sample

To write the probability of error for the original problem, we define the decision rule (also
called the test function or critical region indicator function) as

W =decide H°

Ix =decide H,

Then, we have

P, = P[decide H, I Ho ]P[Ho] + P[decide Ho I H, ]P[H1 ]

= P[5(x) = I I Ho];r0 + P[q(x) = 01H,];r,

- 0 f 0(x)px (x)dx±,;1 L(1-I-(x))px (x)dx

where px (x) and pX (x) are the probability density functions (PDFs) under H0 and H1,

respectively. This can be written as

P, = ;'l + L O(x) [gopx (x)- 7'•px (x)] dx
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Now assume that we modify x by adding c so that the test stistic becomes y = x + c, where c is a
random variable independent of x, and whose PDF is pc(c). Since the identical decision rule is to
be used, we have

P = =r; + (x)[;roPo(y)-;r~pr(y)]dy.

But

p0 (y) = po' (y - c)pc (c)dc

pr (y) = f• p(y-c)pc(c)dc.

We have then that

Pe= 7r1 + E• O(x)[)r, E px (y-c)pc(c)dc-;rl f•ipx (y-c)Pc(c)dc•_y

= ),r + f[f i(y) (iropx(y - c) - grpjx'(y -c))dy]Pc (c)dc

I ,:+ Ec 0Y(Y) (0 Pox (Y-C)-rP x (Y -c))dY]

where Ec denotes expected value with respect to pc(c). Hence, we wish to choose pc(c) so that
the slightly more convenient form

J(Pc) = Ec [ 0 o (y) ((0 p0 x (y - c) - 7rlpx (y - c))dy] (4.1)

is maximized. This is done in the next section. We will see that the random variable C may be
chosen as a constant and therefore we need only maximize the expression within the brackets of

(4.1) over a constant c. But this is equivalent to shifting 4(u), the decision region function by -C.
Hence, the solution effectively shifts the decision region by a constant. This suggests that
another means for improving performance is to transform the decision region using a nonlinear
transformation (instead of a simple shift). It can be done by transforming the data sample x using
a nonlinear transformation g as g(x). This is addressed in Chapter 8 and will be considered
further in Phase II.

4.2 Derivation of Optimal PDF for C

It is well known that Ec[g(C)] is maximized by placing all the probability mass at the value

c for which g(c) is maximized. We assume that the function g(c) has at least one point at which
a maximum is attained. Calling this point co the optimal PDF is then pc(c) = 6(c - co), where

eo = argc max g(c)

or
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co = arg, max L 0(y) (r 0p (y - c) - jrpx (y - c))dy.

A slightly more convenient form for g(c) is obtained by letting u = y - c so that

g(c)= fe (u+c)(;rp((u)- Topox(u))du (4.2)

which is recognized as a correlation between 4(u) and ;rjpX(u)-;ropx(u). In summary, we

should add the constant c to x, where c is the value that maximizes the correlation given in (2).
Since the decision function 4(x) in (4.2) is completely general, the optimal solution is valid for a
given binary decision rule with any decision region. For example, if the original decision rule
were to decide H1 ifx > a, then we would use 4(u) = 1 for u > a, and zero otherwise in (4.2). If it
were to decide H1 if lxi < a, then we would use 4(u) = 1 for lul < a, and zero otherwise in (4.2).
(Note that if 4(u) = 1 for ;rlpx (u) - irpx (u) > 0 and zero otherwise, then g(c) is maximized for

c = 0. This is because in this case the decision rule 4(u) is optimal.) In the next section we solve
this for a given example.

4.3 The Gaussian Mixture Example

We now consider the problem described in [Kay 2000]. but instead choose the probability of
error criterion. The problem is to decide between px (x) and px (x) = px (x - A), where A > 0

is a DC level that is known and the noise PDF is the Gaussian or normal mixture

pI (x) = p, U2) + N(x,-p, U2) (4.3)

where

N~;,, ')exp I (X -p) 2 i
, 2 r-ý2  1-2Cr

2  J

The original decision rule is to choose H1 ifx > 0 so that 4(x) = us(x), where u,(x) is the unit step
function. Additionally, we assume equal a priori probabilities so that TEO = 1 = V2. As a result,
we have from (4.2) that

-j) f u, (u +c) (pX(u) - po(u))du

=f(px(u)-po(u))du

= -[(1 - Fl (-c)) - (I - F0 (-c))]

= '[Fo(-c)-Fl(-c)]

where F, is the cumulative distribution function of x under the hypothesis H-. For our problem,
we have that pX (x) = px (x - A) and so F, (x) = F0 (x- A). Thus,
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g(c) = -[F. (-c) - Fo (-c - A)]

and differentiating and setting equal to zero produces

pox (-c) = pox (-c - A)

or equivalently since px (x) is even, we have the general requirement

Pox (c) = pox (c + A). (4.4)

Using (4.4) in (4.3) produces

O(c;,p,0c') + ±(;(;-pu,a') = 0(c + A; p, o-') + O(c + A;-u,0C2 )

which upon simplification yields the equation

exp(c / Co
2 ) + exp(-uc / c-2 ) = exp [(-c(A - p)/C2) -A A/(2/()2 + ,uA/2C2]

+ exp[(-c(A+p)/I&)-A2/(2C2))-,uA/C.2].

For ýt = 3, a 2 = 1, and A = 1, we have

exp(3c) + exp(-3c) = exp(2c + 5 / 2) + exp(-4c - 7 / 2).

The exact value of c found through a numerical search is c = 2.50, which could also be found by
ignoring the terms exp(-3c) and exp(-4c - 7/2) since these are nearly zero for this value of c.
Another solution is found by ignoring the other set of terms to yield c = -3.5. Note that either of
these choices causes the PDFs of x + c under H0 and H1 to cross at the origin (see Figs. 4.1 and
4.2). If we did not have the right-most Gaussian mode, then the choice of c = 2.5 would result in
a maximum likelihood (ML) receiver, which is optimum [Kay 1998]. This is because a
maximum likelihood receiver chooses the hypothesis whose PDF value is larger. In our case, the
fixed decision regions are R1 = {x: x > 0} for H, and RO = {x: x < 0} for H0 as shown in Fig.4. 1.
These decision regions are not optimal. The optimal ML decision regions are indicated in
Fig.4.1 as Ro and R,. Therefore, the region in x for which Ro # R1, which corresponds to the

dark PDF lines, will result in incorrect decisions. By the addition of c, however, the extent of
this incorrect decision region is reduced, as indicated in Fig.4.2.
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Fig.4.1 Original PDFs. The left-most PDF modes cross at x = -2.5, which is indicated by the
dashed vertical line. The fixed decision regions are indicated by R; while the optimal ML
decision regions are indicated by R>*.

It is instructive to also plot the probability of error versus c or equivalently the probability of
correct decision P, = 1 - Pe versus c. This is shown in Fig.4.3. Note that as expected the
probability of a correct decision is maximized at c = 2.5 and also at c = -3.5. This type of curve
is normally associated with the phenomenon of stochastic resonance, although here we see that it
is not unimodal. This result is unlike that reported in [1-3] and so debunks the common
assumption that adding too much noise will degrade performance. The latter is only true if the
performance is unimodal.
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Figure 4.3 Probability of a correct decision versus the value of the constant c to be added to the
data sample. The dashed lines are at c = -3.5 and c = 2.5.
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5.0 Application of Stochastic Resonance to Nonparametric Detectors

Here we consider detection performance of two additional nonparametric detectors which
exhibit improvement via additive SR noise; namely, the Wilcoxon and the dead-zone limiter
detectors. In addition to the sign detector, these detectors were considered in [Chen, et. al.,
2006c]. The asymptotic efficiency (AE) as well as finite sample detection performance of these
SR modified detectors was reported. For large sample sizes, the AE of the Wilcoxon and the
dead-zone limiter [Kassam 1976] detectors was shown not to improve by the addition of SR
noise. However, for finite sample sizes, both of these detectors show improvement in the
presence of additive SR noise.

Nonparametric detectors have received considerable attention in signal detection problems
[Kassam 1980]. An important feature of such detectors is their guaranteed level and reasonable
power for large classes of input distributions. However, in most cases, a nonparametric detector
is less efficient than the optimal detector. Therefore, an important consideration is the potential
improvement of their performance while maintaining their false alarm rate (CFAR) property.
Here, we explore the potential detection performance improvement of several nonparametric
detectors by adding SR noise to the observed data.

5.1 Problem Formulation for Nonparametric Detectors

Let us consider a detection problem based on the observed data vector x = [xl, x2, ... , XN]
with probability density function p(x), where the xi, i = 1, 2, ... , N are independent identically
distributed (i.i.d.) scalar random variables. We decide between hypotheses HI and Ho given by

Ho :p(x) = H f (xi)
1' (5.1)

H," p(x) = f(xi - A)

where the pdff,(.) of the scalar random variable xi is symmetric, i.e., fx(x) = fx(-x) and A > 0.
Therefore, this test is essentially the detection of a constant positive DC signal A in additive
noise. with a symmetric pdf.

Following the SR approach, detection performance enhancement is achieved by adding
noise n = [nl, n2, ... , nN] to the original data process x to obtain a new vector y = x + n, where ni
are i.i.d. scalar random variables with pdffn(n). The constant false alarm rate (CFAR) property
is maintained by retaining the symmetric pdf property of x. Therefore, we restrict fn(n) to be
symmetric, i.e.,fn(n) =fn(-n). Givenfi(x) andfn(n), the pdf of yi under the H0 hypothesis can be
expressed by the convolutions of the pdfs such that

fy (yi) =fx (xi) * fn (ni)

= .f(xi)f(yi -ni)dx1
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= Lofx(yi -ni)f 1 (xi)dxi. (5.2)

It can be shown that fy(y) =fy(-y), i.e., fy(y) is a symmetric function. Therefore, P(y > 0IHo)
1/2., and the CFAR property of the nonparametric detectors is maintained.

The binary hypotheses testing problem for this new observed data y can be expressed as:

Ho :P(Y) = F1- fy (Yi)

N
Hi" P(Y) = -If, (Yi -- A)

The cumulative distribution function (cdf) of yi is given by

Fy(yi) = L ftfx(xi)f.(yi -xi)dxidyi

= L ff(x( i)fn(Yi -xi)dxidyi

= f. (Xi)Fn (yi- xi)dxi = L fn(xi)Fx (yj -xi)dx. (5.4)

5.2 SR Detection Performance for Nonparametric Detectors

Detection performance for the three detectors is now considered using stochastic resonance
for the problem involving a known DC level in Gaussian mixture noise with mean ýt = 3 and
modal variance a2 = 1. In the asymptotic case where signal strength vanishes and sample sizes
approach infinity, the performance is evaluated in terms of the asymptotic relative efficiency
(ARE) between the original detector and the SR noise modified detector. Further, the ARE can
often be expressed as the ratio of their asymptotic efficiencies given by

dE[T(xN)] IA=o
E = lim dA(5.5)

N-*o NVarA=o[T(xN)]

where T(.) is the test statistic. Similarly, for the finite sample case, we compare the relative
performances by the deflection measure [Picinbono 1995] which is defined as

D(T) = [E(T I H) -E(T I H1)]2 (5.6)
var(T I H0)

for the sign and Wilcoxon detectors. For the dead-zone limiter detector, we illustrate the
performance by several examples.
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A. The Sign Detector

For the sign detector, we have a test statistic and decision rule as follows

H,
T, =I)- sgn(xi)><r7 (5.7)

H,

where sgn(x) is the sign of x, given by

sgn(x) = x>0 (5.8)

x<O

Let p x= P(sgn(x) = 11H-), i = 0, 1. From, (5.1), we have Pox = f(x)dx = 0.5 and

Px f•f(x - A)dx

2 (a.f(x)dx)Fx(A) = Q +

Furthermore, the test statistic Ts is binomially distributed with parameter Pi under Hi, i = 0, 1.
Since, Pox= 0.5 is fixed, therefore when px> 0.5, the detection performance of the sign detector

is monotonically determined by Px, i.e., the higher the value ofPJx, the better the detection

performance of (5.7). It can also be shown that the expected value of T, under Hi is expressed as
E(TslHi) = NPJx, i = 0, 1 and the variance of T under H0 is var(TIHo) = N/4. The deflection

measure of the sign detector Ds is given as

Dx = 4N(PJx - p0o)2 = 4N(PI _ 0.5)2. (5.10)

Similarly, for y, we have PIy= 0.5 = Pox andDy =4N(Ply- 0.5)2. However, due to the

additive SR noise n, PIy is changed such that

ply= fA f(y)dy

=-F f f, (Y -X) fn(x)dx dy

- f fn(W f f,(y)dydx

- f f(x)F,(A+x)dx

- f2f,(x)[Fx(A+x)+ F(A-x)]dx
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- ff(x)G(x)dx (5.11)

The right hand side of (5.11) is obtained by applying the symmetry property off,(x) and letting
G(x (A+x)+F(A-x) From (9), Px = G(O). Let GM = max(G(x)) and xg be the

2

minimum non-negative x such that G(x0) = GM. Since f f,, (x)dx = 1, we have PY •_ GM. The

equality can be obtained be selecting an optimum SR noise pdf f,, such that

fo (x) = 1-(x -x9) + 1S(x + xg). (5.12)

2 2

Therefore, when GM > G(O), the detection performance of the sign detector can be improved by
adding SR noise. Correspondingly, its deflection measure is such that Dyo > Dx. Note that G(x)

can be expressed as

G(x) + Fx(A+x) + Fx(A - x)
2

_ FJ(A+x)+ 1 - Fx(-A+x)

2
1 1 IA+x ( . 3= E+ x ff(t)dt. (5.13)

Therefore, for the asymptotic case where N -> oo and A -+ 0, it follows that G(x) ;t V+ Afx(x) so
that G(0) ;t V+ Afx(0). As a result, the asymptotic detection performance can be improved if
fx(O) # max(fx(x)). The same conclusion can also be obtained by evaluating the asymptotic
efficiency and the ARE between the original detector and the SR noise enhanced detector. For
the sign detector, its asymptotic efficiency is given by

EX = 4f2(0) (5.14)

and similarly

EY = 4 f7(0) = 4[ I x X~]2. (5.15)

Again since f f,. (x)dx = 1, the optimum SR pdf for this case is

f°W(x) 1s(x-Xo)+ 1s(x+Xo) (5.16)
2 2

31



where fx (xo) = max(fx (x)). In general, we have the ARE between the noise modified detectors

and the original detectors Ey,x given by

EYx = fY2(0) (5.17)

B. The Wilcoxon Detector

The Wicoxon detector test statistic is expressed as

N i=j H,

Tw - sgn(xi + xj)<7. (5.18)
j=l i=1 H0

In the asymptotic case, the asymptotic efficiency of the original Wilcoxon detector E1 is given

by Ex = 12 [ff7(x)dx . Let Hx(co) = ffx(x)exp(-joix)dx be the Fourier transform of

f.(.). Sincefx(x) _ 0 is a symmetric real function, Hx(co) = ffx(x)cos(ox)dx is also a real

function. From Parseval's theorem, we have

12[ ff�f2(X)dx] 6 '[ H[ H (c)d ]2 (5.19)
Ex = 12 X X] 

(5.19)

Similarly, the asymptotic efficiency of the SR noise modified detector E1 can be expressed as

Ey = 12 [f (y)dy] = [H>o)dco. (5.20a)

From (5.2), we have HY(co) = Hx(co) Hn(o), so that

Ewy = 6 HY2(o)H,2 (co)do] (5.20b)

and the ARE between the noise modified detectors and the original detectors is given by

EY,x = (L ) (5.21)

Note that
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H,,(co)l = _ f, (x) exp(-jaox)dx

f'f(x)cos~cox)dxI

< f ,f(x) I cos(cox)I Id

< Ef,(x)dx = 1.

Therefore, we have Hi(ow) <5 H,(to) and furthermore, E, < Ex,. In other words, in the

asymptotic limit where N --> oo and A -- 0, the Wilcoxon detector performance cannot be
improved by adding independent SR noise. However, the detection performance may still be
improved in the finite sample case.

C. The Dead-Zone Limiter Detector

The dead-zone limiter detector [Kassam 1976] employes the dead-zone limiter characteristic
1, to operate on the data where lc(') is given by

lC(x){ = -c < x • c (5.22)

x<c

where c is a prescribed positive number. Let Ncp be the number of samples which satisfy xi > c
and N, be the number of samples which satisfy Ixil > c. In order to obtain a false alarm rate, a,
the dead-zone limiter detector selects the H1 hypothesis with probability one when Ncp > g,(N,)
and with probability P3a(Nc) when Ncp = ga(Nc). Both ga(N.) and P3a(Nc) are suitable functions
such that the false alarm rate is fixed at a. For the dead-zone limiter detector with parameter c,
assuming Fx(c) < 1 andfx(c) is continuous at c, we have its asymptotic efficiency Exz given by

ED7 = 2 fX(c) (5.23a)
1-Fx(c)"

Thus, for the SR noise modified detector, its asymptotic efficiency is expressed as

EY = 2 f 2 (c) (5.23b)1Z -FY(c)"

The ARE between the SR noise modified dead-zone limiter detector and the original dead-zone
limiter detector is given by
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- fy 2(c)/(1 - Fy (c)) (5.24)EDZ~ fx2 (c) /(I - Fx (c))

Using (5.2) in (5.23b), we have

E~z -2 f•2 (c)

S 1-F(C)

_ 2( Jf(c-x)fo(x)dx)2
1 - F•F (c-x)f(x)dx

2(- (F (c - x)f (x)dx

= 2(ff2(c -x)f ,(x)dx) (5.25)

2fZ- ,(c -x)) ff((c)

Let2f (c - x) . Therefore, when c is selected to maximize Exz i.e., K - - ,(c
S a- Fx(c - x) i - Fx(c)

we have E~z < Exz. Thus, the asymptotic efficiency of the tuned dead-zone limiter detector

with optimal parameter c cannot be improved by adding SR noise. However, (5.25) does not
rule out the possible SR effect when c is not optimum. Furthermore, similar to the Wicoxon
detector, for the finite sample and vanishing signal case, the detection performance of the dead-
zone limiter detector may still be improved by adding suitable SR noise.

5.3 Experimental Results

Here we consider the detection of a known DC signal in symmetric Gaussian mixture noise;
i.e.,

fx(X) =Y(x;-P, o-) + Y(x; P, Co)
where

y ( x ; ,p , o-C 2 ) - • e x p 2 o -)

2is the PDF of a Gaussian random variable with mean g and variance a . We consider two types
of SR noise. These include the symmetric two-peak random noise with two random values

fi(x) = 0.55(x - r) + 0.58(x + t) Symmetric two-peak SR noise

and white Gaussian SR noise

fg(x) = 'Y(x;O,t 2). Gaussian SR noise
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The noise modified data processes are denoted as ys and yg, respectively. In this example, we set
Go = 1, pt =3, and the sample size N = 5. From (5.2) we have the PDF ofyg given by

fY" (y)= y(y;-/_t, 0-02 + 1-2) +I ;(Y;/p, U20 + 1-2) (5.26)

and the PDF ofy,
fy, (y)= V(y;--, _p o+lI y(y;-/_p +,r, U2 I;(y; p-rI, U2~) +-y(y;/p +,r, U2) (.27

4f0(W)0 0 (5.27)

Next, we evaluate both the asymptotic detection performance and the finite sample detection
performance for this particular detection problem for the three nonparametric detectors.

A. Asymptotic Detection Performance

In this section, the asymptotic efficiency of the three SR modified nonparametric detectors
foe both SR noises are obtained and plotted in Fig. 5.1. The detection performance of
nonparametric detectors based on y, and yg are denoted as Ey, and Eyg , respectively. For the
dead-zone limiter detector, two different c values are examined. One is the optimum value of the
dead-zone limiter co = 3.61 for the problem considered here and its corresponding values are

shown as EfY and EfY in the figure. The other parameter is c, = 0.61 ,f 2 + ar2 = 1.929 which

is the optimum value assuming that the noise is Gaussian distributed with the same variance as
that in our example. In both Fig.5.la and Fig.5.1b, the asymptotic efficiency of the Wilcoxon
detector and the dead-zone limiter with co = 3.61 is maximum when r = 0, i.e., in the limit of
large data samples, the detection performance of the optimal dead-zone limiter and the Wilcox
detector cannot be improved by adding SR noise. However, for the sign detector and the
suboptimal dead-zone limiter (cl = 1.929), their detection performance can be enhanced! For the
sign detector based on Ys, from (5.16) we have fi(ro) = max(f,(x)). Since fi is a symmetric
Gaussian mixture noise and 2gi = 6a0, the distance between the two peaks is significantly larger
than their variances and the maximum value of f, is reached at the mean value of each
component of the mixture, i.e., r, = g. = 3. Thus, we have the maximum achievable asymptotic
efficiency Esy, = 0.1592. Compared to the original Sign detector which has a low value of

asymptotic efficiency Es = 7.8565x10 5 , the ARE between these two detectors is Ey"x = 2026,

i.e., by adding suitable SR noise, the detection performance of the sign detector is enhanced by
more than a factor of 2000. Similarly, for the Gaussian SR noise case, we have the optimum
-Tg= = 2.8284. Furthermore, the maximum achievable asymptotic efficiency when SR"Sg = 'x . 33 1

Gaussian noise is added is - = 0.026 and the corresponding ARE is Es•x = 331.

For the Wilcoxon detector, the results shown in Fig.5.1 are to be expected. When r > 0, the
efficiencies EY, and EY9 are always less than Ex , i.e., adding any noise to the observation data
will only degrade the detection performance. The same conclusion can be drawn for the dead-
zone limiter detector with the optimal parameter co = 3.61. However, for the dead-zone limiter
detector with suboptimal cl = 1.929, as shown in Fig.5.la and Fig.5.1b, when r is relatively
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small, EDz1 increases when r increases, i.e., the detection performance is improved by adding
suitable SR noise. For ys, the maximum EDYý, is Ey,1 = 0.0657 with parameter TY, = 0.92 and

the mximumEZ 1  0.0614 is achieved with parameter rY9 = 0.590 for y. The ARE for both

cases are =y 1. 116 and Eyg 1.0416 for y, and yg, respectively.
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Fig. 5.1 Asymptotic Efficiency of the SR Noise Modified Nonparametric Detectors, (a) based on
ys, (b) based on yg.
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B. Finite Sample Size Detection Performance

In this section, we consider two different values of A to examine the detection performance
of the nonparametric detectors. For the sign and Wilcoxon detector, A = 1 is assumed in the first
example. From (5.9), we have

p x = Fx (A) 1 •Q (-I+_I Q(--

2 U t2-Ux

where Q(x) I -- expL-• 2t is the complementary distribution function for the standard

Gaussian distribution. Therefore, we have in this case,

Gx(x) Fx(A + x) + Fx(A - x)

2

1 E- I p-A+x] I Q pj-~A-xj IQ ~p-A+x (5.28)
4 (, Uo ) 4 ( o 4 U0o 4 UO' 0

Taking the derivative w.r.t. x, setting it equal to zero and solving, we have x0 ' ý1 = 3. The

optimal SR noise PDF for the sign detector is f (x) 5-(x +3) + - 5(x -3). Thus, we have ])-

= 0.6707 and the maximum deflection measure D = 0.5826. The relationships between the

deflection measure D and Tr for the sign and Wilcoxon detectors obtained by Monte Carlo
simulation are shown in Fig.5.2. Clearly both curves achieve their peak values when r > 0, i.e.,
an improvement in detection performance is obtained when suitable noise is added. The
deflection measure of the SR noise modified sign detectors for both types of SR noises improves
when the SR noise is suitable. On the other hand, for the Wilcoxon detector, it is a different
story. As shown in Fig.5.2a, when the SR noise is a randomization of two values, the deflection
measure D14 may be larger than that of the original detector as noted by the peak at r = 3.

However, this is not the case when the additive SR noise is Gaussian. As shown in Fig.5.2b,

Dwy decreases monotonically as r increases, i.e., for the Wilcoxon detector, the SR phenomenon

is not observed for Gaussian SR noise.
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For the dead-zone limiter detector, we chose a relatively strong signal with A = 4. Again,
two dead-zone limiter detectors with parameters c. = 3.61 and cl = 1.929 are tested. Since the
dead-zone detector is a conditional detector, unlike the other two detectors, it is difficult to
calculate its deflection measure. To evaluate its relative detection performance, we use the
detection power P of the SR noise enhanced dead-zone limiter while keeping the false alarm rate
(x = 0.1 fixed. Intensive Monte Carlo simulations were performed to obtain the detection
performance. As shown in Fig.5.3a, for both dead-zone limiter detectors based on observation
ys, the detection performance increases as r > 0 increases and reach their peaks when -r 2.8
and r ; 2.1 for c, and Cl, respectively. When the additive SR noise is Gaussian, maximum
detection powers P3 are obtained when r z 1.8 and -r 1.4, respectively. Also, by comparing the
maximum values from these two figures, we find that the detection performance of y, is better
than that ofyg, i.e., in this case, adding two peak random SR noise is better than adding Gaussian
SR noise.
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Fig. 5.3a. Probability of detection versus standard deviation -T based on y, for the dead-zone
limiter detector with sample size N = 5, signal strength A = 4, and false alarm rate cc = 0.1.

39



0.65

-e--c= 3.61
C, 1.929

0 0.55 - - - - ------------

2- 0.35---------------

C 0.

"0.4 2-4 6 8i

o0.25 1

0 10

Standard Deviation -r
b.

Fig. 5.3b. Probability of detection versus standard deviation 'T based on yg for the dead-zone
limiter detector with sample size N =5, signal strength A = 4, and false alarm rate cc = 0. 1.

5.4 Summary of Results for SR Enhanced Nonparametric Detectors

In this chapter, we have investigated the performance of the SR noise enhanced sign,
Wilcoxon, and dead-zone limiter detectors. The asymptotic efficiency as well as the finite
sample detection performance of the SR modified detectors are obtained. It has been shown that
for the sign detector, an improvement of the asymptotic efficiency is possible under certain
condition. For the Wilcox detector, there is no SR effect in terms of the asymptotic efficiency.
For the dead-zone limiter detector, a similar conclusion is obtained when its c parameter is
optimal. However, when c is not the optimal value, it is still possible to improve its asymptotic
efficiency by adding suitable SR noise. Also, as shown in our detection example, it is possible to
improve the performance of these detectors when only limited data samples are available.
Specifically, a remarkable result shown for this problem is the fact that whereas the Wilcoxon
detector is far superior to the sign detector without SR noise ('r = 0), the presence of the optimal
SR noise enables the sign detector to significantly outperform the Wilcoxon.

Overall, SR provides an important approach to enhance the performance of commonly used
nonparametric detectors. Similar approaches can be employed for other nonparametric detectors.
Further issues such as the determination of the optimum SR noise PDF for a larger set of
nonparametric detectors are under investigation.
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6.0 Application of Stochastic Resonance to Imagery

6.1 Image Quality Metrics

In Phase I, a state-of-the art assessment was conducted on image quality metrics to
determine if they can provide an approximate and more efficient method of obtaining quality
scores provided by human observers. Important considerations involve image noise consisting
of (a) random image noise such as impulsive and additive noise as well as (b) structural noise
consisting of artifacts in the imagery. Another important consideration is the degradation of
image sharpness due to blurring, ringing, and blocking effects. The advantages of the image
quality metrics is that they are able to dynamically monitor and adjust image quality, optimize
parameters and algorithms, and benchmark image processing systems and algorithms.

Objective quality metrics can be placed in three general categories. These consist of (a) full
reference, (b) no reference, and (c) reduced reference. Full reference metrics provide a so-called
'perfect version' in the sense that 'ground truth' or a 'golden image' is available as a reference.
Here, the image quality is measured by comparing the difference between the reference and the
distorted image. For the 'no reference' case, no such reference is available so that the image
itself must be assessed. Finally, the 'partial reference' methods utilize available partial
information regarding the 'perfect image' as in the case of image fusion processing where
multiple images are utilized.

Several image comparison metrics have been proposed to compare the similarity between
different images. Among the most prevalent is the mean-squared error metric which is an
average of the sum of squares of the pixel value differences between each image and is expressed
as

1 N M

MSE = _- [X(, j)- Y(i.j)] 2  (6.1)
AMz i=1 j=1

where X(i,j) and Y(ij) are the ijth pixel values for images X and Y, respectively.

Due to its important statistical meaning, Mutual Information (MI) is also widely used as
an evaluation measure which is given by

I = H(X) + H(Y) - H(X, Y) (6.2)

where H(-) is the entropy. Although it can been shown that for I = H(X), Y is identical to X,

MI is not directly related to human perception performance; i.e., MI does not adequately indicate
the visual perception performance [Chen et al. 2005]. Also, since the calculation of MI involves
the estimation of a joint PDF between X and Y, MI is often not suitable for a relatively small
sized image where the sample support is low. Alternatively, it is difficult to extend MI to handle
a high dimensional image dataset. A related quantity, however, called the visual information
fidelity metric is considered below.

Structural Similarity (SSIM) [Z. Wang, et al. 2004], a nonlinear combination of the
difference in terms of the mean, variance, and contrast is also widely used and is expressed as
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1 SSIMi (6.3)
M j=1

where
25ý-y + C, 2a'xy + C2 64

SSIM1 = Y2 +C (Y,2 (6.4)

The Visual Information Fidelity (VIF) has also been considered [Sheikh, Bovik, et al.
2004]. It is a measure of the ratio

VIF = Di- (6.5)
RU

where Di is the distorted image information and Ri is the reference image information. A signal
gain and additive noise model in the wavelet domain given by

D=GC+V (6.6)

is applied to describe the test image, where C denotes the random field (RF) from a wavelet sub-
band in the reference image and D denotes the corresponding signal in the test image. G is a
deterministic scalar gain and V is white Gaussian noise. A Gaussian distribution assumption is
then made to calculate the mutual information. Overall, DiI and Ril are obtained as the
summation of the mutual information of all sub-bands between the distorted image and the true
image C and between the reference image and C, respectively. Examples of the VIF metric are
shown in Fig. 6.1 for VIF values of 1.0 (reference image), 1.1, 0.07, and 0.10.

Reference VIF = 1.0 Contrast Enhanced VIF = 1.10

Fig. 6.1 Examples of the Visual Information Fidelity (VIF) metric (continued on next page).
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Blurred VIF = 0.07 JPEG Compressed VIF = 0.10

Fig. 6.1 (continued) Examples of the VIF metric.

The 'No-Reference (NR) Quality Assessment' algorithms [Z. Wang, et al., 2000], [Sheikh,
et al., 2005] were recently developed to evaluate image quality without a reference image; i.e.,
when no reference image is available. They are based on a quantization of the image distortion.
Specifically, the edge sharpness level quantization relates to the edge width and the blur level
estimation and noise level estimation is affected by the impulse noise level and the additive
Gaussian noise level. Some existing NR metrics consist of image ringing and blurring measures,
image noise level, as well as receiver operating characteristic (ROC) curves as in medical image
processing where the detection performance of a certain disease is considered.

Finally, the Adaptive Image Quality Measure (IAQM) has been considered [Bingabr,
Varshney, Farell, 2003] as a measure which provides the peak signal-to-noise ratio computed
after eliminating the errors not seen by the eye and the extent (in terms of percentage of blocks)
to which the image is corrupted.

In future work, we will utilize such metrics to improve the filtered image quality and
determine the best parameters for the SR based approach as in cases such as the median filtered
image discussed in Section 2.0. By doing so, automatic filtering algorithms will be developed
and it is anticipated that performance will be improved over state-of-the-art methods.

6.2 Detection Enhancement in Imagery

We again emphasize that the specific form of the noise PDF plays a critical role to achieve
enhancement via SR. We reconsider the problem addressed in [Kay 2000], but now for a two-
dimensional (150x150 pixel) image. In Fig. 6.2, a 6x6 window is used to process the data so that
N = 36 pixels. Fig. 6.2a shows the original image with no additive noise while Fig. 6.2b shows
the image with additive Gaussian mixture noise. Fig. 6.2b is now used as the baseline observed
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image containing signal and noise. In Fig. 6.2c, the sign detector processes the image of Fig.
6.2b and in Fig. 6.2d we observe a modest image visualization performance improvement, the
result of adding white SR Gaussian noise with a variance of 2.0.

In Figs. 6.2e and 6.2f, we consider the problem from a detection viewpoint showing binary
detection results for the sign detector without and with Gaussian SR noise, respectively. Here,
we compare the test statistic values to a threshold to decide signal presence (white region) or
signal absence (dark region). The figures demonstrate the SR effect on detection performance
improvement. Specifically, the detection performance within the signal region has improved.

40

40 40

120 so 8

120 2012

140

20 40 M• 40 110 120 140 20 40 0 C 10O 20 140 20 40 4 40 1( 20 ) 1A

a. b. C.

Detecton without SR noise Detecton with Gaussian SR noise

23 20

40 40

40 e4

ý202f

IM 1ý 140140

20 AO 80 4 0 '10 120 142 20) 4 40 40 1M 120I 140 20 40 GO BO 120 120 140

d. e. f.

Fig. 6.2 Image enhancement using Gaussian SR white noise, a.) signal image, b.) signal image
plus Gaussian mixture noise, c.) sign detector test statistic, d.) sign detector test statistic with
Gaussian white SR noise, e.) detection using sign detector without SR noise, f.) detection using
sign detector with Gaussian SR noise.
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Test Staistic witt Discrete SR noise Test SO.stic with Discrete SR noise

a. b.
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Fig. 6.3 Image enhancement using discrete SR noise PDF with n1 = -4.0 and n2 = 2.0, a.) test

statistic values, 2, = 0.05, b.) test statistic values, 2. = 0.1587, c.) detection results, 2. = 0.05, d.)
detection results, 2. = 0.1587.

In Fig. 6.3, however, we repeat the results using the discrete PDF as in (2.17), but now using
nl=-4.0 and n2 = 2.0. Figs. 6.3a and 6.3b show the test statistic values with probability values 2.

= 0.05 and 0.1587, respectively. The results reveal a noticeable improvement in the image
visualization quality when compared to Fig. 6.2d. Figs. 6.3c and 6.3d show corresponding
binary detection results with significant enhancement over the results for Gaussian SR noise
shown in Fig. 6.2f. A comparison of Figs. 6.3c and 6.3d further reveal the impact of the
parameter 20 to control P0 and PY levels.

Finally, we consider the application of the theoretical SR detection framework to an actual
image to determine the image visualization improvement. In Fig. 6.4, we consider the 'Lena'
image with the original image shown in Fig. 6.4a and the image with a high threshold level
applied in Fig. 6.4b. In practice, the latter would represent an incorrect binary threshold or
perhaps a human 'eye-detector' with a damaged neuron requiring a high excitation level. In Figs.
6.4c, d, and e, specific cases of Gaussian, uniform, and optimal discrete SR noise are considered,
respectively. The results demonstrate the potential for dramatic image visualization improvement
with the application of the appropriate SR noise PDF. In phase II, attention will be given to the
'a priori' information considerations required to achieve the improvements in practice.
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7.0 Application of Stochastic Resonance (SR) to Distributed Detection

Despite the progress achieved over the past two decades, the application of the SR effect to
distributed detection has not been shown. Here, we investigate this application area for the dual
hypothesis detection problem. We restrict ourselves to binary local sensor outputs, denoted by
Uk, and consider the cases of both conditional independence and dependence among sensor
observations. The degradation of detection performance caused by transmission errors between
local sensor outputs and the fusion center is assessed. The relationship between the additive SR
noise and system performance is explored. For the traditional two-stage approach using the
Chair-Varshney fusion rule [Chairl986], the role of additive SR noise at both the decoding stage
and the decision stage is discussed. We show that the SR phenomenon exists under certain
circumstances for both cases.

7.1 Stochastic Resonance Problem Statement

We again summarize the mathematical framework here for convenience. Given a K-
dimensional data vector x E RK, we decide between two hypotheses Hi and Ho,

HO: px(x;Ho) = po(x) (7.1 a)
Hi: p,(x;H1) = pl (x) (7.1 b)

where p0(x) and pi(x) are the pdfs of x under H0 and HI, respectively. In order to make a
decision, a test that can be completely characterized by a critical function (decision function) 4
where 0 < 4)(x) < 1 for all x, is required to choose between the two hypotheses. For any
observation x, this test chooses the hypothesis H1 with probability 41(x). The detection
performance of this test 4(() can be evaluated by its probability of detection PD and probability of
false alarm, PFA. In order to enhance detection performance, we add SR noise to the original
data process x and obtain a new data process y given by

y = x + n, (7.2)

where the n is either an independent random process with pdfpn(.) or a nonrandom signal. For
the case where the critical function 4(.) is fixed, to improve PD without increasing PFA, the
optimum SR noise has been shown to consist of no more than two discrete vectors [Chen
2006a,fJ; i.e., the optimal SR noise pdf p°Pf (n) is of the following form,

p°Pt (n) =- A5(n -nl) + (1 - i2)8(n - n2) (7.3)

where 0 < X < 1, nj and n2 are suitable K dimensional vectors.

7.2 Decision Fusion and non-ideal Transmission Channels

A typical parallel fusion model with transmission channels is shown in Fig. 7.1. For the kth
local sensor, an independent binary decision uk is made based on its observations. Without loss
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of generality, assume that u. = 0 if H0 is decided and Uk = 1, otherwise. The detection
performance of the kth local sensor node can be characterized by its corresponding probability of
false alarm and detection, denoted by PFAk and PDk, respectively. The kth local decision Uk is

sent to the fusion center through a transmission channel Ck characterized byp(xk Iuk). Yhe

final decision uo is made at the fusion center based on the received data x = [xi, x2, ... , XK]T and

the fusion rule y, i.e.,

U0 = Y( X1, X2, ... , XK). (7.4)

U1

PD9F2Sensor 2 U2 P X1 U )-2uso

PDK, PFAK -ISensor K P(IjK

Fig. 7.1 The parallel fusion model.

In general, two different fusion rules are applicable at the fusion center depending on the
different definitions of the output x. For the traditional two-stage approach, the output of each
transmission channel Xk is the estimate ofuk; i.e., the kth channel can be described as a binary

channel with crossover error probabilities ak and 13k. The fusion rule yi, assuming perfect
connections between the local sensors and the fusion center, is given by

7. = log (1 PDk)PFAk > < ' (7.5)

Further, by applying the channel model for the signal detection problem for the kth local sensor
and its corresponding channel Ck, the relationship between Xk and the hypothesis Hi can be
described as a two-layer transformation channel shown in Fig. 7.2 with its equivalent one-layer
model shown in Fig. 7.3. After accounting for channel errors, the equivalent kth sensor
probability of detection Pfk and probability of false alarm PCAk are given by

Pck = ( - P3 k) PDk + ck(l - PDk) (7.6)
and

PPFAk = ( 1- 3 k) PFAk + Ok(l - PFAk)" (7.7)
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Ho 1 - PFAk 1 0

P FA < Uk k<X
1 - PDk Uk kXk

H1 11
Pgk 1 13 k

Fig. 7.2 A two layer transmission channel model for a distributed detection system.

1- PEAk0

PCC
Hnp 1 - i i- 0

PcFA>k

PDk 
Xk

H1 "/" PC

P Dk

Fig. 7.3 Channel model for a signal detection problem in local sensor k.

Therefore, when the channel statistics Uk and 13k are available, the optimum fusion rule y2 at the
fusion center is given by the Chair-Varshney rule [Chair 1986]

r2Elo (1-PX1kl) D k > (7.8)

When the channel is perfect, i.e., ctk = 3k = 0, we have P•, = PDk andPFAk = PFAk while =Y2 -- 1.

Compared to the two-stage fusion approach where the output of channel k is the binary
estimate of Uk, channel aware decision fusion rules have been developed recently [B. Chen
2004], [Niu 2006] based on the direct observation of channel data. In this approach, the output
of channel Ck is no longer a binary variable but a continuous random variable. The exact form of
P(Xk I uk) depends on the coding rule at each local sensor and its corresponding noisy channel
model. For example, for many wireless sensor network scenarios, the kth channel between the
kth local sensor and the fusion center can be modeled as a unit power Rayleigh fading channel
consisting of additive Gaussian noise with variance o-2. Assuming that the local sensors send a
1 when H1 is decided and -1 otherwise, the channel statistic P(Xk I uk) is given by

49



p(xk lu 1)- 20.k exp(--,(p k[ ,--- exp(akxk/2)Q(-akxk)], (7.9)
P(2k I(1 + 2"k2) 2. L-

and
2ak 2

P(Xk2I(Uk=) P (k/2)Q(akxk), (7.10)
= 1 + 2a) 2 exp(_t

where ak 0.k (1+20.?) and Q(x) exp(-t2 /2)dt is the complimentary distribution

function of the standard Gaussian distribution.

Several decision fusion rules that require different degrees of a priori knowledge have been
proposed in [B. Chen 2004], [Niu 2006]. We summarize the test statistics for a few of them
here.

1. Chair-Varshney Fusion Rule

73 = E log(;FAk;Dk I(xk) (7.11)k=1 1_ (1 - Pok )PFAk

where I(.) is an indicator function

I(x) = OX Ox<O

2. Equal Gain Combining (EGC) Fusion Statistic

1K
Y4 =-EXk, (7.12)

k=l

3. Likelihood Ratio Test Based on Channel Statistics (LRT-CS)

These test statistics are based on the knowledge of channel statistics and local detection
performance indices

Ks = log 1 + / 2;/akxk exp(akxk2/ 2)Q(-akxk) (7.13)
k=1lo 1- -,2I-7rakxk exp(akxk / 2)Q(akxk) J
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It has been shown that although y3 is near optimal when the channel SNR is high, it suffers
significant performance loss at low to moderate channel SNR. However, as shown in the next
section, the detection performance of ' 3 can be improved by adding independent SR noise.

7.3 Noise Enhanced Decision Fusion

We now consider two examples to demonstrate the possible SR effect is decision fusion.
Consider the first decision fusion approach where an estimate of Uk is obtained before being sent
to the fusion center. Here, two sensors are involved in the system. For sensor 1, we assume that
PD1 = 0.8, PFA1 = 0.1 and the detection performance for sensor 2 is PD2 = 0.95, PFA2 = 0.05. We
further assume that channel one is a perfect channel while channel 2 is a noisy channel with
crossover error probabilities (X2 = P32 = 1/3. In practice, this may depict a scenario in which sensor
I is located far from the signal source, but close to the fusion sensor. On the other hand, sensor 2
may be located close to the signal source, but far from the fusion center. Therefore, at the fusion

center, the detection performance of the second sensor is actually equivalent to PD2= 0.65 and

PF.2= 0.35. The detection performance of fusion rules 71 and 72 is shown in Fig. 7.4. Clearly,

due to the performance loss in the noisy channel, yj is no longer the optimum fusion rule and its
detection performance is degraded. In order to improve the performance of 'y, we add SR noise
to the observed data x2 to obtain a new data sample Y2. Since x2 is a discrete random variable,
we use the noisy binary channel model with crossover probabilities cLSR and P3SR to generate the
new noisy SR data sample y2. Thus, the procedure here is to utilize the cross-over error
information in the enhancement procedure. Specifically, x2 is observed at the fusion center. The
decision x2 is either retained or changed depending upon the outcome of a comparison of a

uniformly distributed random variable w with some specified values cxSR and PSR. If X2 is
observed as a zero and w < CCSR, then x2 is changed to a one. Conversely, if x2 is observed as a
one and w _< 3SR, then x2 is changed to a zero. It is interesting to note that the randomized
procedure actually introduces additional errors in sensor 2, but places more emphasis on sensor 1
with the negligible channel cross-over errors.

The fusion performance of yl using the new data sample y2 is also plotted in Fig. 7.4. When
CtSR = 0 and [3SR = 0.5, a higher PD for this SR modified fusion system is observed for PFA E

[0.07, 0.35] when compared to the original y'. A similar effect is also observed for the parameter
setting with UCSR = 0.5 and P3SR = 0. Furthermore, it can be shown that performance enhancement
for the shaded region in Fig. 7.4 is possible by adding suitable SR noise.

In the next example, in order to examine the possible SR effect in decision fusion for a
wireless sensor network, we choose the number of sensors to be K = 8, with PDk = 0.5 and PFAk =

0.05 for each sensor. The SR noise n is chosen to be a DC value of A; i.e., instead of using the
original data xk to perform decision fusion using y3, new SR modified data Yk = Xk + A is used.
Due to the computational complexity of this detection problem, the detection performance
evaluation is obtained by intensive Monte Carlo evaluation. Fig. 7.5 shows the deflection
measures [Picinbono 1995] for different fusion rules with SR noise A = -0.2 and the deflection
measure is defined as
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D(y)- [E(y Ho)-E- E(O' )]2  (7.14)
Var(y Ho)
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Fig. 7.4 Detection performance comparison of different fusion rules and SR noise.

As observed in Fig. 7.5, for most values of channel SNR, by adding a stochastic resonance noise
n = A = -0.2 to the observed data x, the deflection coefficient is improved. An interesting
observation is that when channel SNR is between 10dB and 20dB, the deflection coefficient of
SR modified y3 is even higher than that of LRT-CS. However, this does not imply that the
detection performance of SR modified 73 is better than LRT-CS since these test statistics are not
Gaussian distributed.
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Fig. 7.5 Deflection Coefficient for different test statistics, A = -0.2.
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For a fixed channel SNR and SR enhanced y'3 decision fusion, the relationship between
different values A and deflection coefficient D is shown in Fig. 7.6. As A starts becoming
negative, the deflection coefficient D first increases and then, after attaining its peak, decreases
as A decreases further. The optimum value of A, namely A0, which maximizes D is an increasing
function of SNR. When SNR is very high, we have A0 z 0 which is consistent with the
conclusion drawn in [B. Chen 2004], [Niu 2006] where the asymptotic optimum of 'Y3 is derived;
i.e., SR noise will not improve performance at high SNR.
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Fronmiso (9) and e (10),uaterasoed calculation, we havefoy,

iX = Pi(k = I I Uk=0,(.5

0k =P IYk = Ojk = 1) = I -P k = 1U 1-(.6

From (9) and (10) afterinale ' alrulatowe.v

P(I(yk) = lI uk = 1) p((xk + A) -P1 Uk = 1)
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=p(Xk --> -Al Uk = 1)f127l2+2- xp(_ 2 Ii+_ V akt exp(at 2 / 2)Q(-akt)?t

=-A (+20)

Q A Q(Aak) exp (7.17)
-k - 1f+-20- 1i +2-2

and

P(I(yk)= llUk=O)= I-Q -•A Q(-Aak) e1p A 2 (7.18)Uk /1 + -2,7k- ( 1 +-20-k

From (17) and (18), it can be shown that cXk monotonically decreases and 13k monotonically
increases as A decreases. An illustration of such relationship is shown in Fig. 7.8 for the case of
channel SNR = 5dB. Also, from (6) and (7), it can be shown that for any fixed channel SNR and
probability of false alarm PFA, the probability of detection PD given by the SR modified fusion
rule 'y3 is determined by the crossover error probabilities Ck and 13k, k = 1, 2, ... , K which are
functions of A. Therefore, there exists a suitable A which yields the best detection performance,

i.e., maximizes the PD for a given PFA. When A = 0, Cxk = P3k = 12- 1 - ' When SNR
Y2 -ý2ý 1+ 2g

is very high, ak, 13k -> 0, and the channel Ck becomes a near perfect channel. As a result, Y3
becomes a near optimum fusion rule.
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Fig. 7.7 ROC curves for various fusion statistics; SNR = 5dB, A = -0.2.
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Fig. 7.8 The equivalent channel crossover errors as a function of A, SNR = 5dB.

7.4 Summary of Results for Distributed Detection using SR

In this section, we have considered the detection performance of distribute detection and
fusion systems in the presence of non-ideal transmission channel. For fusion of decisions
transmitted over channels that can be modeled as a binary channel, we showed that the detection
performance of some decision fusion systems can be improved by randomly changing the
received binary signal, i.e., by adding stochastic resonance noise. For the problem of fusion of
decisions transmitted through a Rayleigh fading channel, we established the equivalence between
this fading channel and the binary channel model for the widely used two-stage Chair-Varshney
fusion rule. We further demonstrated the existence of the SR phenomenon in this fusion problem
by adding a discrete DC value to the observed signal at the fusion center. A significant
improvement of detection performance is reported when suitable noise is selected. Further
results including an adaptive approach to learn the optimum noise vale n and an extension of this
SR effect to other decision fusion systems will be forthcoming.
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8.0 Optimal Decision Processing by the Transformation Method

For decision problems whose decision region is suboptimal, we now show how to transform
the decision statistic to recover optimal performance [Kay, 2006a]. This novel methodology
holds considerable promise in a wide range of application areas involving decision theory. The
procedure simply amounts to transforming the decision statistic to yield a combined
statistic/decision region which is optimal. The approach may be thought of as a generalization of
the stochastic resonance phenomenon, which employs a random linear transformation, and hence
should be widely applicable to many practical problems. Maximization of the probability of a
correct decision, as considered here for example, has direct applications to communication
theory. The method considered here treats the univariate case. Its generalization to the
multivariate case will be considered in future work.

8.1 Mathematical Description of the Transformation Method

A mathematical justification of the approach is given in this subsection with an example in
the next subsection. Here, we assume that the problem is to decide between two hypotheses Ho
and H1 based on the observed scalar test statistic x. The two hypotheses are assumed to be
random events with prior probabilities of no and 7r1. This test statistic is a function of the original
data. A future problem will address the extension to the case when the original data is
accessible. Based on the observed data sample x, a decision rule has been implemented as
follows:

ý(x) = 1 decide i (8.1a)

4(x) = 0 decide Mo. (8.1b)

This decision rule is assumed to be suboptimal. Denoting the probability density functions
(PDFs) as px (x) and pX (x) under Ifo and Y1j, respectively, the probability of a correct decision

is

S= o fE (1 - q(x))px (x)dx + g, fE (x)pX (x)dx

= go + E (w)P' piX (X)-)Top6x (x)]dx (8.2)

Note that unless 4(x) = 1 for all x such that that irlpX (x) -;ropx (x) > 0 and zero otherwise

(which is the optimal decision rule) this probability will not be maximized.

Now consider that we transform the test statistic as y = g(x) using some function g. The
function is assumed to be piece-wise monotonic so that over each interval of a finite number of
disjoint intervals either g'(x) Ž_ 0 or g'(x) < 0 (the prime denotes differentiation). The

transformed test statistic y is then input to the decision rule 4(.) to yield 4(y). This is in
accordance with the assumption that the decision rule is fixed and so cannot be changed. Only
the test statistic can be modified. We will see, however, that this is mathematically equivalent to
modifying the decision rule. To do so note that P., which is now based on y, is
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PC = go + f•0(y) [Prpr (Y)-goPr (y)] dy. (8.3)

We now utilize the piece-wise monotonic assumption of g(x) to write the real line as
R= uNIi = uN, (a,,b,), where a<b < <a b <.aN <b. and the intervals are open. The

function g(.) is monotonic over each interval Ii. The omission of a finite number of points from
the integral will not affect the results as long as the PDFs do not contain any impulses at these
points (or cumulative distribution function is continuous over all of R). Now we have that by
defining

-= r(aj, b) ifg'(Ij) > 0 (8.4)

- L(b,,a,) ifg'(I,) < 0

and using a change of variables from y to g(x)

PC= )TO + fr3(g(x))[g 1pr (g(x))- opr (g(x))]g'(x)dx
N

=o + Z f. 5(g(x))[i7rpr (g(x))- opr' (g(x))]g'(x)dx. (8.5)
i=1

Note that for the intervals for which g'(x) < 0, we have J, = (bi, a,). Absorbing the negative sign

into g'(x) for the monotonically decreasing function intervals yields

N

Pc = go + o j qi(g(x)) [gipl' (g(x))- -opr (g(x))] I g'(x) I dx. (8.6)
i=l

Next we recognize that py(g(x))Ig'(x)l=px(x) andpr(g(x))lg'(x)j=pox(x), so that we

finally have

N
Pc = o +~ j', (g(x))[;lpjx'(x)-;opox(x)]dx

=o + fq5(g(x))[gTplx (x)- gopox (x)] dx. (8.7)

We now have that the probability of a correct decision is based on z(g(x)). In effect by
transforming the decision test statistic x to g(x) we have been able to effectively modify the
decision region. It is clear from (8.7) that for optimal performance we must have

0 * (x) = O( g(x)) otherwise (8.8)
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where 0' (x) denotes the optimal decision rule based on x. In composite function notation, we

require for optimality that

0 o g(x) = •z(g(x)) = 0 * (x). (8.9)

We need only determine the function g(.). We provide an example in the next section.

8.2 An Example of the Transformation Method

We now consider a very simple example, for which the solution is obvious. The example is
that of deciding between x - 9V(0,1) under YfO and x - 9V(1,1) under 3Tj, where gv(Na2) denotes a

Gaussian PDF with mean ji and variance a2. The prior probabilities are 70 = 71 = V2. We assume
that the suboptimal decision rule is to decide Hl1 if x _> 0 and decide 5%i if x < 0. The optimal

decision rule for this problem is to decide Yfi if x _> 1/2 and decide 5%b if x < 72. This is just the
maximum likelihood decision rule [Kay 1998]. The suboptimal decision rule produces the
correct decision for all x not in the interval [0, 1/2). It is clear now that to modify the suboptimal
decision rule to make it optimal we need only map the values of x in the interval [0,1/2) into any
other interval for which the suboptimal decision rule will produce a zero at its output. For
example, we could use

x for x >1/2 and x< 0

g(x)={X forx 1/a (8.10)x for0 < x<1/2

Note that the effect of the transformation is to do nothing (g(x) = x) if the test statistic value will
produce the correct decision. However, in the interval [0,1/2) the decision is incorrect. To
convert it to a correct decision, we simply negate the value of the test statistic as g(x) = -x. Then,
the values 0 < x < V2 become negative and are decided to correspond to Yf% in accordance with the
suboptimal decision rule. Finally, it should be observed that the function chosen is piece-wise
monotonic (as well as discontinuous).
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Figure 8.1 Transforming Function - One of many possibilities.

9.0 Recommendations and Future Considerations

9.1 Extensions to the Optimized SR Detection and Estimation Framework

a. Optimized SR Detection Framework for the Unknown PDF Problem

In our Phase I effort, as discussed earlier, we have addressed the problem of using SR to
improve detection performance for the case when the probability density functions (PDFs) under
the two hypotheses are known. In future work, the emphasis must now be placed on the problem
of adaptive learning and training of SR modified detectors in the unknown PDF case. For any
specific test, we assume that the prior probabilities of both hypotheses are known and that we
have the knowledge of the model of this detection problem. Therefore, given a set of testing
samples, the underlying PDFs for the two hypotheses detection problem may be determined by
statistical learning methods [Vapnik 1996]. Furthermore, this learned PDF/CDF can be
employed further to construct a better detector or to improve the detection performance of the
detector obtained by the SR approach introduced in two of our papers [Chen, et. al., 2006a, b]
developed during Phase I. Other model based learning algorithms such as the Ozturk algorithm
[Ozturk, 1992] developed at Syracuse University (used to learn the distribution model) and the
EM algorithm (used to learn the parameters of a certain model) shall also be explored. The
information extracted from data via these methods will be further utilized to determine the form
of the optimum SR noise distribution for the detection problem under consideration.

b. Variable Decision Functions

In our prior work in Phase I, the test statistics as well as the detection threshold were
assumed fixed. Extension of the SR formulation of the fixed test statistic and detection threshold
case to the variable threshold and variable statistic case will be pursued. Let D denote the set of
all possible test statistics, 9 be the set of all possible thresholds and 17 be the set of all possible
SR noise PDFs. For a Neyman-Pearson detection approach, we know that for any fixed
probability of false alarm PFA, its corresponding PD can not be greater than 1. Thus, there must
exist at least one (4,0,7t)e(D,4,,1) that maximizes the PD with false alarm rate less than or equal
to PFA. The same conclusion can also be drawn for the Bayesian case. From our work reported in
[Chen, et al., 2006a] and [Kay, et al., 2006], we have: 7t = pn(X) = 5(x-c) for the Bayesian
approach and 71 = Pn(X) = X8(x-d) + (1-X)8(x-f) for the NP approach. The next step of our
proposed Phase II effort in this area is to establish some relationships among 4, 0 and it for the
variable decision function and to further simplify the procedure to find the best SR detection
systems.

c. Optimum SR Noise Considerations under Constraints

In some practical applications, additional constraints on SR noise may be applicable. For
example, in a wireless sensor network (WSN), the power consumption at each sensor is a
concern. In this case, we would want to know the form of optimum SR noise PDF if the detector
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or sensor's power is limited. This important case of SR noise under potential constraints will be

investigated.

d. Optimum SR Noise for the Multiple Hypotheses Test

In our prior work in Phase I, we focused our attention on binary hypothesis testing problems
with considerable success. We now intend to extend our results to the multiple hypotheses
testing problem. This problem is encountered in classification problems in various applications
such as target identification, medical imaging, and remote sensing. As is well known from
statistical decision theory, due to the complexity of the problem and unlike the two hypotheses
test, the optimum solution of a multiple hypotheses test is very difficult to determine. The form
of the optimum decision regions is not rectangular in general and in many cases non-optimum
rectangular decision regions are employed. Therefore, our SR approach may play a very
important role in this case. The role of SR has not been investigated in this context. In future
analyses, we will seek to determine the form of the optimum SR noise distributions for this
important case.

e. Robust Nonlinear Systems and Robust SR Noise

In the Phase I study, we evaluated the detection performance of certain detectors by adding
independent SR noise provided the PDF for each hypothesis is known and fixed. In the next step
of our research, a set of nonlinear systems will be considered and their robustness subject to
small variations of the input signals will be evaluated. The relationship between the nonlinear
system and SR noise from the viewpoint of robustness shall be explored.

f. SR Enhanced Signal Estimation

Dithering related techniques (in the SR sense) have been widely used in preserving signal
information before AC to DC quantization or some other forms of transformations
(preprocessing) [Wannamaker, 2000]. The quantized/transformed signal is then used as the input
to various signal processing systems (post processing). However, due to the fact that many
signal processing systems are nonlinear, the quantized/transformed signal may not be the optimal
input for certain kinds of systems. This is mainly due to the following two reasons: 1. The SR
noise in the preprocessing part may not be optimum. 2. There may exist a mismatch between the
SR noise modified preprocessed signal and the signal processing system that follows; i.e., the SR
noise and its related preprocessed signal may be the optimum signal for one post processing
system, but may not be optimum for another. Thus, it is a very important and interesting
problem as to how to tune the preprocessed signal again by adding SR noise or by some other
methods. As an example, in some preliminary work, we have demonstrated the existence of such
an SR phenomenon in a system where maximum likelihood estimation (MLE) is applied to
estimate the signal parameter from the 1-bit quantized data. This notion will be investigated in
more detail for a wider class of problems and a systematic theory for estimation problems will be
developed just as we have initiated the theoretical formulation for detection problems in our
Phase I work.

g. Numerical Approaches to Optimum SR Noise PDF Determination
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Numerical optimization approaches will be pursued to obtain an optimal solution of SR noise
PDF. As shown in our previous results, the theoretical optimum SR noise PDF is shown to be a
single impulse for the Bayesian approach and two-peak noise for the NP approach subject to a
constant false alarm rate (CFAR) constraint. It is relatively easy to obtain the solution for the
single dimensional problem. However, for higher dimensional problems, it is much more
difficult to find the solution. Thus, a set of numerical approaches including but not limited to
Genetic Algorithm, Simulated Annealing and Particle Swarm Optimization techniques need to be
examined for potential use for this problem. We plan to conduct a study and characterize the
efficacy of different optimization algorithms for SR problems.

h. Nonlinear Stochastic Resonance

The concept of SR will be extended to a much broader context. So far, we have restricted
ourselves to the additive form of SR noise; i.e., we have only considered y = x + n. Here, we
will consider the case where the noise can actually take any functional form, i.e., we will extend
it to the more complicated case where y is a function of input x and noise n, such that y = f(x,n).
For example, we may consider a SR noise modified observation model to be multiplicative, i.e.,
y = n*x. Further, instead of considering only one source of noise, multiple noise sources can be
considered. For example, we could have a multiplicative part and the other an additive part. One
such kind of noise model is applicable when a signal is transmitted over a Rayleigh fading
channel where y = nl*x + n2. The detection performance, the optimum solution and the
performance bounds for these more general SR schemes will be investigated with improved
performance anticipated.

L. Detection Enhancement in the Presence of Correlated Non-Gaussian Noise

Further consideration should also be given to performance improvement to be realized by
SR applied to nonparametric detectors for the problem of signal detection in correlated non-
Gaussian noise and additive white Gaussian noise. Here, the bimodal models considered in
Phase I shall be generalized to the multi-modal compound Gaussian model. Further, a very
general class of non-Gaussian processes known as Spherically Invariant Random Processes
(SIRP) [Yao, 1973] shall be considered. The theory of SIRPs provides an elegant and
mathematically tractable approach for the generation of multivariate non-Gaussian PDFs. Issues
such as detection performance robustness and estimation efficiency (i.e., sample support size) are
essential for these analyses.

There are two types of models for correlated non-Gaussian processes: (1) the endogenous
model and (2) the exogenous product model [Conte, 1987]. For the endogenous model, the
desired non-Gaussian PDF and correlation function is realized using a zero memory, non-linear
transformation on a real Gaussian process. In this approach, however, it is not possible to
control both the PDF and the correlation independently [Rangaswamy, 1993]. Further, the
nonlinear transformation may give rise to non-Gaussian processes with a non-negative definite
covariance matrix. For the exogenous model, however, the desired non-Gaussian process is
generated by the product of a Gaussian random process and an independent non-Gaussian
process which can be correlated. Thus, the PDF and correlation can be independently controlled.
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This feature provides an important capability for both detection and estimation performance
assessments. Issues such as detection performance robustness and estimation efficiency (i.e.,
sample support size) are of prime interest for these analyses.
9.2 Optimal Decision Processing by the Transformation Method

The derivation of the transformation method discussed in Section 4.0 will be extended to the
multivariate case in the future. Specifically, the more general case of data vectors of length N
shall be considered. This will allow the application of the approach to the more general problem
when multi-sample data is available. The choice of the g(.) function is the critical issue here. In
theory, it is always possible to choose an appropriate function to implement the optimal
mapping. However, in practice, if we are within a high-dimensional space, it may not be obvious
how it is chosen. We plan to investigate this approach as well as a possible extension to the case
of random transformations. The usual SR method may be thought of as a random transformation
that is effected by adding a random variable to the data. However, the restriction to an addition
means that the transformation is constrained to be linear. Clearly, this is so restrictive as to
impede the possible implementation of an optimal decision rule. Our approach will alleviate this
restriction.

9.3 Stochastic Resonance in Imagery

a. Image Quality Metrics

As noted previously, important image processing considerations involve image noise
consisting of (a) random image noise such as impulsive and additive noise as well as (b)
structural noise consisting of artifacts in the imagery. Another important consideration is the
degradation of image sharpness due to blurring, ringing, and blocking effects. The advantages of
the image quality metrics is that they are able to dynamically monitor and adjust image quality,
optimize parameters and algorithms, and benchmark image processing systems and algorithms.

Future work should further consider the image metrics noted in Section 6.1. We shall utilize
the appropriate metrics to assess improvement of the filtered image quality and determine the
best parameters for the SR based approaches as in cases such as the median filtered image
discussed in Section 7.0. By doing so, automatic filtering algorithms will be developed and it is
anticipated that performance will be improved over current state-of-the-art methods.

b. Noise Reduction

In our prior work in Phase I, it has been shown that SR can help to improve the noise
filtering performance in image processing. In particular, in [Chen, et. al., 2006d], we have shown
that SR noise can improve the performance of median filtering. This provides us the motivation
to apply SR to a much broader class of image filtering and restoration problems for improved
human visualization. In unreported work, we have further demonstrated the existence of the SR
effect for an image corrupted by Gaussian noise. Our preliminary experiments show that the
performance of Wiener filters improved when suitable SR noise is added. This is very
encouraging since Wiener filters are optimal for the Gaussian noise case with a stationary signal.
The reason for such improvement is the fact that the assumption of stationarity does not usually

62



hold in images even for a small local region and almost all images are non-stationary, i.e., their
content varies depending on location. In the future, we should focus on the derivation of the
optimum solution of the SR noise PDF for a large class of image enhancement problems.
Emphasis should be placed on the development of efficient algorithms, possibly including an
adaptive self-learning algorithm, to find the optimum SR noise for image filtering applications.

c. Image fusion

Image fusion, an important image processing technique to integrate useful information from
different input images, has been widely used in a number of applications such as remote sensing
and medical image processing. Among all of the image fusion algorithms, wavelet based multi-
resolution image fusion is the most popular and powerful approach. One critical and difficult
aspect in such an approach is to determine the fused image wavelet coefficient values. A number
of algorithms have been developed to tackle this problem. Future work should focus on how to
use SR to improve image fusion quality, namely, how the SR noise can play a role to better
select the wavelet coefficients as well as to determine the suitable neighborhood for an improved
fused image. The image quality will be evaluated based on image quality metrics (see Section
6.1) that we have developed based on the human visualization system. Thus, a SR based image
fusion framework will be developed and its performance evaluation will be carried out.

d. Target Detection and Identification in Images

An important future consideration for SR enhanced detection is the extension of the current
techniques from single pixel detection (the circular image of Fig. 6a) to more general target
detection based on image data. One immediate application is to use SR to enhance template
matching for target detection, i.e., given a grey/color image I and a target template X (for
example, a face, a building or a military target, the template itself may be a simple binary image,
a grey scale image, or a color image), the goal will be to search for the template in the entire
image. To find the existence and position of X in the given noisy image Y, a template matching
technique is often used; i.e., moving X on Y and attempting to find the peak of a similarity
metric such as the correlation function or mutual information. This is similar to matched
filtering in a single dimensional problem. As Y often appears to be a grey image, one would
expect some error and considerable computational burden as we try to find the template X in the
image Y directly when Y is a noisy image and/or the matching algorithms are sensitive to the
small variations in the grey levels. The problem is actually similar to the image registration
problem in which Syracuse University has considerable experience. Therefore, in this problem,
quantization (or segmentation) of Y may become a very important preprocessing step.
Furthermore, we would expect the SR effect (both in quantization and after quantization) to
occur in a similar manner as in SR enhanced median filtering. The potential for improvement
may be significant. A variety of applications can be pursued within this framework. These might
include face recognition, image registration (to improve the performance via registration after
segmentation) and may even be applicable to the single dimensional problem.
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9.4 Stochastic Resonance in Image Visualization

a. Enhancement of RGB Imagery

In our prior work in Phase I, it has been shown that the quality of the thresholded 'Lenna'
image can be improved by adding a suitable two-peak noise. In future studies, the optimal noise
for a noisy image should be determined where the reference image is no longer available. To
better utilize the spectral as well as the spatial information, some image models such as
multiple-dimensional Markov Random Field models will be developed to better describe the
correlations between R, G and B (red, green, blue) bands to further improve the image quality.
Performance evaluation as well as adaptive learning algorithms will be pursued.

b. Multi- and/or Hyperspectral Imagery

In this area, the potential of improving Remote Sensing (RS) detection performance as well
as classification accuracy via SR will be explored. Our preliminary results show that suitable
Gaussian SR noise can improve the accuracy of the Gaussian Maximum Likelihood Classifier
(GMLC). The role of SR in this area will be further examined utilizing the extensive techniques
developed at Syracuse University [Varshney and Arora, 2004]. Possible enhancement of other
processing algorithms by adding SR noise will also be evaluated. The form of suitable SR noise
for specific algorithms will be derived.

c. Hyperspectral Image Visualization

Principal Component Analysis (PCA) and Segmented PCA (SPCA) based image visualization
techniques [Tsagaris, 2005] are widely used to condense the information contained in
hyperspectral images. However, due to the non-Gaussian nature of the hyperspectral images,
PCA and SPCA may not fully utilize the hyperspectral imagery information. Moreover, PCA
based techniques may introduce some artifacts. In general, a universal optimal method to display
the contents of the hyperspectral images does not exist. Therefore, in future analyses, the
potential enhancement by SR in various visualization schemes will be pursued and a better
visualization result is expected.

d. Enhancement of Region of Interest (ROI)

Determination of the region of interest (ROI) is an essential part of many applications such
as the determination of possible location of tumors in medical images and the possible
target/incidents in video surveillance. For these types of problems, description of the statistical
properties of the ROIs to specify the exact form of the target distribution is generally impossible,
although some features may be available. In future studies, SR based techniques should be
developed to better extract the features from the image and determine the location and size of the
ROIs. This approach will have a very broad application in medical image processing.
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9.5 Visual Image Fusion Considerations for Human Perception

The rapid development in imaging and computing technology has fostered utilization of
visual information for situation assessment and decision making. Multiple image devices of
either the same or different modalities are used to capture images. These images are then fused to
integrate each image's information content to render a single image of enhanced quality. As
image fusion techniques become available, evaluation of their performance is of high interest.
However, there is a requirement for specific metrics to evaluate the quality of fused images and
its affect on the human vision system (HVS). This problem has been addressed at Syracuse
University [Chen and Varshney, 2006]. For the current proposal, such algorithms may be
pertinent to the fusion of multiple images each containing an IID realization of added noise.

Comparative evaluation of fused images is a critical step to evaluate the relative
performance of image fusion algorithms. Human visual inspection is often used to assess the
quality of fused images. Here, we discuss some variants of a new image quality metric based on
the human vision system (HVS). These measures evaluate the fused image quality by comparing
its visual differences with the source image thus requiring no ground truth knowledge. First, the
images are divided into several local regions. These regional images are then transformed to the
frequency domain. Second, the difference between the transformed local regional images is
weighted with a human contrast sensitivity function (CSF). The local regional image quality is
obtained by computing the mean square error (MSE) of the weighted difference of the images
obtained from the fused regional image and source regional image. Finally, the quality of a
fused image is the weighted summation of the local regional image quality measures. Our
experimental results show that these metrics are consistent with perceptually obtained results.

The design of a universal objective measure for image quality is difficult due to the large
variety of image fusion applications. Often, ground truth images are not available so that image
quality evaluation is complicated. Since humans are the final users of fused images, human
visual inspection is often used as the quality measure. However, human inspection may not
always be possible due to large input and output data sizes and associated financial costs. Several
automatic image evaluation algorithms have been developed recently. A performance measure
for pixel-level fusion performance that compares the edge information of fused images with edge
information of input images has been proposed [Xydeas, 2000]. Later, it was used to calculate
the affect of noise on image fusion [Petrov, 2003]. Mutual information was also employed to
evaluate fusion performance [Qu, 2002]. Wang and Shen [Wang, 2003] proposed a quantitative
correlation analysis method to evaluate hyperspectral image fusion algorithms. [Piella, 2004]
has proposed some new quality measures based on an image quality index proposed by Wang
and Bovik [Wang, 2002]. However, there is no established direct relationship between these
evaluation measures and the real perceptual results of humans.

A number of linear and nonlinear models have been proposed to simulate the response of the
HVS. Use of a contrast sensitivity function (CSF) to modify the difference of two images in the
frequency domain is popular. However, as the CSF is only applied in the frequency domain, it
does not include the nonlinear local spatial information such as local luminance and contrast.
However, local spatial information is very important in image fusion because it strongly relates
to the image content that is transferred from input images to the fused image. Here, we propose
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a scheme to compare the quality of different fused images by comparing them with input
images based on both types of local information. These are given by the salience of a set of
localized windows and the difference in the frequency domain filtered by CSF. Compared to
other measures, our proposed metrics have several advantages. First, we introduce this
methodology to evaluate the image fusion performance. Second, in the conventional CSF based
methods, the entire image is considered. We employ CSF based methods on a region-by-region
basis. This is more suitable for the fusion application because one should examine image quality
at a local level rather than at a global level. Moreover, image content and statistics vary over an
image and, therefore, our region-based image quality measure is more appropriate. Finally,
compared to other methods such as mutual information based methods, our proposed
methods require much less computation.

We illustrate the utility of several image quality metrics under investigation at Syracuse
University (SU) by applying them to evaluate image quality using three fusion schemes. The
first is the 'wavelet'fusion algorithm where the input images are decomposed using a length
four Daubechies wavelet filter. The fused image coefficients are computed by choosing the
corresponding input image coefficients with largest wavelet domain amplitude and by averaging
the coefficients of lowest resolution. The number of decomposition levels is two. This fusion
algorithm emphasizes the fused image edge information. The second algorithm is the
'averaging' method consisting of the average of the input images on a pixel-by-pixel basis. The
third is the 'Laplacian' pyramid based method where the input image is decomposed using a
Laplacian pyramid decomposition and the fused image is reconstructed by averaging the low
resolution components and selecting the coefficients with largest amplitude for the remaining
coefficients.

The images shown in Fig. 8.1 are created by blurring the original speckle noisy 'Lenna'
image (a) of size 256x256 using a lOxlO mean filter twice to obtain two input images (b and c)
to be fused. Input images (b) and (c) have blurring that occurs in the right and left half of the
images, respectively. In Fig. 8.1d, e, and f, we observe that the 'wavelet' method outperforms
the other two. Performance results for 10 repeated trials are shown in Table 1. These include
new metrics developed at Syracuse University denoted by the first three superscripted Q's. For
low SNR, the 'averaging' method is best, while at high SNR, the 'wavelet' method is superior.
The results were confirmed by seven human subjects. They preferred the 'wavelet' method for
SNR > 25dB and the 'averaging' method for SNR<25dB. Details of the new performance
metrics are considered further in [Chen & Varshney 2006].

In Phase II, we will continue our consideration of new perceptually based quality metrics for
image fusion which do not require a reference image. Compared to other measures, these
metrics are easier to calculate and are also applicable to different input modalities. Experimental
results show that our quality metrics fit the results of human visual inspection well and also
correlate well with other measures. Further, our proposed metrics can be used to determine the
fusion performance of different algorithms with different noise PDFs. Several extensions to this
work such as extending our input images to include multi-color images, hyperspectral imaging,
and stochastic resonance effects were initiated in the Phase I effort and will be continued in
Phase II.
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(g1) (Ii)(

Fig. 9.1 Fused images for the speckle noisy 'Lena' image set with different SNRs. The left
column uses the 'wavelet' method, the center column uses the 'averaging' method, and the right
column uses the 'Laplacian' method. (a),(b), (c): fused results when SNR = 15dB; (d),(e),(f):
SNR = 20dB; (g),(h),(i): SNR = 25dB.

SNR(db) Fusion QM QD QA QXIX2IXF MX X2 RMSE I(XR, XF)

Method P XF

15 Averaging 208 307 137 0.5703 2.3658 16.7411 1.2364
15 Wavelet 357 308 342 0.5730 1.7290 25.1462 0.9208
20 Averaging 145 269 73 .6137 2.8120 12.4013 1.4701
20 Wavelet 163 218 124 .6493 2.2712 15.1952 1.2615
25 Averaging 126 262 51 0.6409 3.1972 10.6843 1.6805
25 Wavelet 103 196 55 0.7015 2.7726 10.2462 1.6035

Human 7/7 5.5/7 5.5/7 6/7 5.5/7 3.5/7 6.5/7 4.5/7
Inspection I
Table 9.1 Performance results for visual image fusion and human visualization.
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9.6 Stochastic Resonance in Distributed Systems

It has been shown in our preliminary work during Phase I that SR plays a role in decision
fusion systems. In [Chen et al., 2006e], we have shown the existence of the SR effect in
distributed detection systems for the two hypotheses detection problem. In future research, we
will formulate and explore the general framework of SR in distributed detection and estimation
problems. The role of SR in such a collaborative context forms a fascinating research area, one
that has never been considered.

a. SR in Distributed Estimation

In distributed estimation systems, the data is compressed (often quantized) at the sensor
before it is transmitted to the fusion center. As only limited information is transferred from the
local sensors to the processing sensor, some nonlinear transformations are often applied to the
received data. The role of SR noise in such applications will be evaluated and the possible
estimation accuracy improvement by adding SR noise will be examined.

b. SR in Distributed Detection

In distributed detection problems, Likelihood Ratio Tests (LRT) or locally optimal detectors
(LOD) (when signal strength is weak) are often used at the local sensors. These types of
detectors are optimum when each sensor is conditionally independent [Varshney, 1996].
However, in many practical applications, sensors are at least partially dependent. In that case,
the LRT or LOD are no longer optimum detection approaches. Although the optimal solution for
this problem may be solvable when the full information about all the sensors is available, the
design of each corresponding local detector without this knowledge (which is the desired goal of
distributed systems) is often either too complicated or very difficult to implement. In this
proposed study, we will explore the possible enhancement by adding SR noise to the local
sensors utilizing the available (partial or full) information available about the local sensors to
improve the local detection performance without altering the local detectors. Compared to the
complicated approaches that are currently being investigated in the distributed detection
literature, our SR based approach may provide a very simple and effective approach for
improved detection performance. This will have a major impact on application areas such as
vehicle health management (VHM) efforts for avionic systems currently being studied at
Syracuse University in collaboration with NASA Langley Research Center.
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